Skip to main content
  • General Aspects
  • Published:

Concepts of underwater experimentation

Konzepte der Unterwasser-Experimentation

Kurzfassung

In den letzten zehn Jahren sind Unterwasseruntersuchungen zu einem nicht mehr wegzudenkenden und wichtigen Bestandteil marinbiologischer Forschungen geworden. Die technische Entwicklung dieser methodologisch definierten Disziplin führte vom Schwimm- und Gerätetauchen zu Tauchbooten, Unterwasserhäusern und ferngesteuerten Fahrzeugen. Die Anwendungsbereiche umfassen Beobachtung und Aufsammlung bis zur genauen Messung und Probennahme für ökologische Untersuchungen. Echte experimentelle Arbeit wird jedoch noch immer fast ausschließlich im Laboratorium durchgeführt. Daher ist Experimentation noch immer auf eine begrenzte Auswahl an „haltbaren“ Organismen, eine begrenzte Zahl simulierbarer und kontrollierbarer Faktoren und insbesonders an einen begrenzten Komplexitätsgrad der Untersuchungsobjekte gebunden. Dies ist um so bedauerlicher, als sich in der Ökologie immer deutlicher die Notwendigkeit von Systemanalysen abzeichnet. Der gegenwärtige Standard in Unterwasserbeobachtung und Datengewinnung und die Entwicklung von Multivariatentechniken macht es möglich, die „kontrollierten Bedingungen“ im Laboratorium — die zu oft eine gefährliche Vereinfachung sind — durch die „gemessenen Bedingungen“ in situ zu ersetzen. Die Dringlichkeit experimenteller Arbeit an ökologischen Systemen kann nicht genug betont werden in einer Zeit, in der wir versuchen müssen, mit den Einflüssen unserer Zivilisation auf die natürlichen Lebensräume fertigzuwerden, Voraussagen treffen und Modelle entwickeln zu können.

Summary

1. Recent advances in underwater research are reviewed and critically discussed. New technologies include deep-sea diving apparatus, saturation diving from underwater habitats, submersibles and remote-controlled vehicles. The fields of application include increasingly ecology and animal behaviour.

2. The term “underwater experimentation” is defined and examples provided to illustrate pertinent research.

3. Underwater experimentation is compared to laboratory experimentation. The latter is restricted to a limited set of suitable organisms, which are subjected to “controlled” but frequently quite “artificial” conditions. Furthermore, only systems of a very low degree of complexity can be studied in the laboratory. Underwater experimentation is limited by the restricted performance of man under in situ conditions. Automatisation of experimental units and use of remote-controlled vehicles are proposed to enhance man's underwater capacity.

4. The need for the design of underwater experiments, especially for system analysis, is emphasized. There is an increasing demand for predictive models to anticipate the potential impacts of civilisation on the marine environment.

Literature cited

  • Abel, E. F., 1962. Freiwasserbeobachtungen an Fischen im Golf von Neapel als Beitrag zur Kenntnis ihrer Ökologie und ihres Verhaltens. Int. Revue ges. Hydrobiol.47, 219–290.

    Google Scholar 

  • —— 1971. Zur Ethologie von Putzsymbiosen einheimischer Süßwasserfische im natürlichen Biotop. Oecologia6, 133–151.

    Google Scholar 

  • Adolfson, J., 1967. Human performance and behaviour in hyperbaric environments. Almquist & Wiksell, Stockholm.

    Google Scholar 

  • Baddeley, A. D., 1966. Influence of depth on the manual dexterity of free divers: a comparison between open sea and pressure chamber testing. J. appl. Psychol.50, 81–85.

    Google Scholar 

  • —— 1968. Visual acuity underwater: a review. Underw. Ass. Rep.3, 45–50.

    Google Scholar 

  • —— 1971. Diver performance. In: Underwater science. Ed. byJ. D. Woods &J. N. Lythgoe. Oxford Univ. Press, London, 33–67.

    Google Scholar 

  • —— &Williams, A. N., 1968. Nitrogen narcosis and performance under water. Ergonomics11, 157–164.

    Google Scholar 

  • —— &Flemming, N. C., 1967. The efficiency of divers breathing oxy-helium. Ergonomics10, 311–319.

    Google Scholar 

  • Barnard, E., 1961. Visual problems underwater. Proc. R. Soc. Med.54, 9–10.

    Google Scholar 

  • Barnes, H., 1967. Ecology and experimental biology. Helgoländer wiss. Meeresunters.15, 6–26.

    Google Scholar 

  • Barnett, P. R. &Hardy, B. L., 1967. A diver-operated quantitative bottom sampler for sand macrofauna. Helgoländer wiss. Meeresunters.15, 390–398.

    Google Scholar 

  • Bennett, P. B., 1966. The aetiology of compressed air intoxication and inert gas narcosis. Pergamon Press, Oxford.

    Google Scholar 

  • —— &Catton, M. J., 1967. Efficiency at sorting cards in air and a 20 percent oxygen-helium mixture at depth down to 100 ft. and in enriched air. Ergonomics10, 53–62.

    Google Scholar 

  • Bernard, F., 1967. Réalisation d'une station automatique d'enregistrement des facteurs physicochimiques dans la zone des marées. Helgoländer wiss. Meeresunters.15, 353–360.

    Google Scholar 

  • Berthold, G., 1882. Über die Verteilung der Algen im Golf von Neapel nebst einem Verzeichnis der bisher daselbst beobachteten Arten. Mitt. zool. Stn Neapel3, 393–537.

    Google Scholar 

  • Bowen, H., Anderson, B. &Promisl, D., 1966. Studies of divers' performance during the Sealab II project. Hum. Factors8, 183–199.

    Google Scholar 

  • Brett, C. E., 1964. A portable hydraulic diver operated dredge-sieve for sampling subtidal macrofauna. J. mar Res.22, 205–209.

    Google Scholar 

  • Chapman, C. J. &Rice, A. L., 1971. Some direct observations on the ecology and behaviour of the Norway lobsterNephrops norvegicus. Mar. Biol.10, 321–329.

    Google Scholar 

  • Chouteau, J. &Corriol, J. H., 1971. Physiologische Aspekte des Tiefseetauchens. Endeavour30, 110; 70–76.

    Google Scholar 

  • Christiansson, R. A., 1968. A study of visual acuity underwater using an automatic Landolt ring presentation technique. Ocean Systems Rep.10, 8–128.

    Google Scholar 

  • Clark, T. A., 1970. Territorial behaviour and population dynamics of a pomacentrid fish, the Garibaldi,Hypsypops rubicauda. Ecol. Monogr.40, 189–212.

    Google Scholar 

  • Connell, J. H., 1961. The influence of interspecific competition and other factors on the distribution of the barnacleChthamalus stellatus. Ecology42, 710–723.

    Google Scholar 

  • —— 1970. A predator-prey system in the marine intertidal region. I.Balanus glandula and several predator species ofThais. Ecol. Monogr.40, 49–78.

    Google Scholar 

  • Dohrn, A., 1880. Bericht über die Zoologische Station während der Jahre 1879 und 1880. Mitt. zool. Stn Neapel,2, 495–514.

    Google Scholar 

  • Dybern, B., 1969. Distribution and ecology of the tunicateAscidiella scabra (Müller) in the Skagerrak-Kattegat area. Ophelia6, 183–201.

    Google Scholar 

  • Fager, E. W., Flechsig, A. O., Ford, R. F., Chutter, R. I. &Ghelardi, R. J., 1966. Equipment for use in ecological studies usingScuba. Limnol. Oceanogr.11, 503–509.

    Google Scholar 

  • Faust, K. J. &Beckmann, E. L., 1966. Evaluation of a swimmer's air-water lens system. Milit. Med.131, 779–788.

    Google Scholar 

  • Forstner, H. &Rützler, K., 1969. Two temperature compensated current meters for use in marine ecology. J. mar. Res.27, 263–271.

    Google Scholar 

  • —— —— 1970. Measurements of the micro-climate in littoral marine habitats. Oceanogr. mar. Biol.8, 225–249.

    Google Scholar 

  • Fricke, H. W., 1966a. Zum Verhalten des PutzerfischesLabroides dimidiatus. Z. Tierpsychol.23, 1–3.

    Google Scholar 

  • —— 1966b. Attrappenversuche mit einigen plakatfarbigen Korallenfischen im Roten Meer. Z. Tierpsychol.23, 4–7.

    Google Scholar 

  • —— 1970. Ein mimetisches Kollektiv — Beobachtungen an Fischschwärmen, die Seeigeln nachahmen. Mar. Biol.5, 307–314.

    Google Scholar 

  • —— 1971. Fische als Feinde tropischer Seeigel. Mar. Biol.9, 328–338.

    Google Scholar 

  • Frankenhauser, M., Graff-Lonnevig, V. &Hesser, C. M., 1960. Psychomotor performance in man as effected by high oxygen pressure. Acta physiol. scand.50, 1–7.

    Google Scholar 

  • Gislén, T., 1929/30. Epibioses of the Gullmar Fjord. P. 1. Geomorphology and hydrography. 2. Marine sociology. (Kristinebergs Zoologiska Station, 1877–1927.) SkrSer. K. svenska VetenskAkad.1929 (3), 1–123;1930 (4), 1–380.

    Google Scholar 

  • Goreau, T. F. &Goreau, N. J., 1959. The physiology of skeleton formation in corals II. Calcium deposition by hermatypic corals under various conditions in the reef. Biol. Bull. mar. biol. Lab., Woods Hole117, 239–250.

    Google Scholar 

  • —— —— 1960. The physiology of Skeleton formation in corals, IV. On isotopic equilibrium exchange of calcium between corallum and environment in living and dead reefbuilding corals. Biol. Bull. mar. biol. Lab., Woods Hole119, 416–427.

    Google Scholar 

  • Gray, J. S. &Ventilia, R. J., 1971. Pollution effects on micro- and meiofauna of sand. Mar. Pollut. Bull.2, 39–43.

    Google Scholar 

  • Greve, W., 1968. The “Planktonkreisel”, a new device for culturing zooplankton. Mar. Biol.1, 201–203.

    Google Scholar 

  • Haage, P. &Jansson, B. O., 1970. Quantitative studies of the BalticFucus belt macrofauna I. Quantitative methods. Ophelia8, 187–195.

    Google Scholar 

  • Hamilton, R. W. Jr.,MacInnis, J. B., Noble, A. D. &Schreiner, H. R., 1966. Saturation diving to 650 feet. Ocean Systems tech. Mem.114.

  • Hauenschild, C., 1970. Die Zucht von niederen marinen Wirbellosen und ihre Anwendung in der experimentellen Zoologie. Helgoländer wiss. Meeresunters.20, 249–263.

    Google Scholar 

  • Haux, G., 1969. Tauchtechnik. Springer, Berlin,1, 1–269.

    Google Scholar 

  • —— 1970. Tauchtechnik. Springer, Berlin,2, 1–288.

    Google Scholar 

  • Hemmings, C. C., 1971. Fish Behaviour. In: Underwater science. Ed. byJ. D. Woods &J. N. Lythgoe. Oxford Univ. Press, London, 141–174.

    Google Scholar 

  • Hull, S., 1967. Those remarkable little work boats. Geol. mar. Technol.3, 22–40.

    Google Scholar 

  • Jatzke, P., 1970. The “Trichterkreisel”, an in situ device for cultivating marine animals in tidal currents. Helgoländer wiss. Meeresunters.20, 685–690.

    Google Scholar 

  • Jones, N. S. &Kain, J. M., 1967. Subtidal algal colonisation following the removal ofEchinus. Helgoländer wiss. Meeresunters.15, 460–466.

    Google Scholar 

  • Kain, J. M., 1971. Continuous recording of underwater light in relation toLaminaria distribution. In: Fourth European marine biology symposium. Ed byD. J. Crisp, Cambridge Univ. Press, Cambridge, 335–346.

    Google Scholar 

  • Kent, P. R. &Weismann, S., 1966. Visual resolution under water. U.S. nav. sub. mar. med. Center Rep.476.

  • Kinne, O., 1970a. Erste Erfahrungen mit dem Unterwasserlaboratorium „Helgoland“ (UWL-H). In: Systems 69 (Internationales Symposium über Zukunftsfragen). Deutsche Verl.Anst. Stuttgart, 293–301.

    Google Scholar 

  • —— 1970b. International symposium “Cultivation of marine organisms and its importance for marine biology”. Opening address. Helgoländer wiss. Meeresunters.20, 1–5.

    Google Scholar 

  • Kitching, J., 1941. Studies in sublittoral ecology. 1. Submarine gully in Wembury Bay, South Devon. J. mar. biol. Ass. U. K.19, 677–705.

    Google Scholar 

  • Krasberg, A. R., 1967. The evolution of functional saturation diving. Underw. Ass. Rep.2, 39–45.

    Google Scholar 

  • Kühlmann, D. H. &Karst, H., 1967. Freiwasserbeobachtungen zum Verhalten von Tobiasfischschwärmen (Ammodytidae) in der westlichen Ostsee. Z. Tierpsychol.24, 283–297.

    Google Scholar 

  • Laborel, J., 1961. Le concrétionnement algal «corraligène» et son importance géomorphologique en Mediterranée. Recl. Trav. Stn. mar. Endoume33, 117–173.

    Google Scholar 

  • Larsson, B. A. S., 1968.Scuba-studies on vertical distribution of Swedish rocky-bottom echinoderms. A methodological study. Ophelia5, 137–156.

    Google Scholar 

  • Levinton, J. S., 1971. Control of Tellinacean (Mollusca: Bivalvia) feeding behaviour by predation. Limnol. Oceanogr.16, 660–662.

    Google Scholar 

  • Lickey, M. E., Emigh, R. L. &Randle, F. R., 1970. A recirculating seawater aquarium system for inland laboratories. Mar. Biol.7, 149–152.

    Google Scholar 

  • Limbaugh, C., 1961. Cleaning symbiosis. Scient. Am.205, 42–49.

    Google Scholar 

  • —— &Rechnitzer, A. B., 1955. Visual detection of temperature-density discontinuities in water by diving. Science, N. Y.121, 395.

    Google Scholar 

  • Lüning, K., 1969. Growth of amputated and dark-exposed individuals of the brown algaLaminaria hyperborea. Mar. Biol.2, 218–223.

    Google Scholar 

  • —— 1971. Seasonal Growth ofLaminaria hyperborea under recorded underwater light conditions near Helgoland. In: Fourth European marine biology symposium. Ed byD. J. Crisp, Cambridge Univ. Press, Cambridge, 347–361.

    Google Scholar 

  • Machan, R. &Ott, J., 1972. Problems and methods of continuous in situ measurements of redox potentials in marine sediments. Limnol. Oceanogr.17, 622–626.

    Google Scholar 

  • McIntyre, A. D., Munro, A. L. &Steele, J. H., 1970. Energy flow in a sand ecosystem. In: Marine food chains. Ed. byJ. H. Steele. Univ. California Press, Berkely, 19–31.

    Google Scholar 

  • Miles, S., 1962. Underwater medicine. Staples Press, London.

    Google Scholar 

  • Milne-Edwards, H., 1845. Recherches zoologiques faites pendant un voyage sur les côtes de la Sicile. 1. Rapport. Annals. Sci. nat. (Zool., Sér. 3)1, 129–182.

    Google Scholar 

  • Myrberg, A. A., Banner, A. &Richard, J. D., 1969. Shark attraction using a video acustic system. Mar. Biol.2, 264–276.

    Google Scholar 

  • Neshyba, S., 1967. Pulsed light stimulation of marine biolumiscence in situ. Limnol. Oceanogr.12, 222–235.

    Google Scholar 

  • Neumann, A. C., 1966. Observations on coastal erosion in Bermuda and measurements of the boring rate of the spongeCliona lampa. Limnol. Oceanogr.11, 92–108.

    Google Scholar 

  • Neushul, M. &Haxo, F. T., 1963. Studies on the giant kelpMacrocystis. 1. Growth of young plants. Am. J. Bot.50, 349–359.

    Google Scholar 

  • North, W. J., 1961. Experimental transplantation of the giant kelp,Macrocystis pyrifera. Int. Seaweed Symp.4, 248–255.

    Google Scholar 

  • Odum, H. T., 1971. Environment, power and society. Wiley-Interscience, New York, 331 pp.

    Google Scholar 

  • —— &Odum, E., 1955. Trophic structure and productivity of a windward coral reef community on Eniwetok. Atoll. Ecol. Monogr.25, 291–320.

    Google Scholar 

  • Ott, J., 1969. Mikroökologie von Phytalbeständen am Beispiel der Nematoden. Diss. Wien, 123 pp.

  • Paine, R. T., 1966. Food web complexity and species diversity Am. Nat.100, 65–75.

    Google Scholar 

  • —— &Vadas, R. L., 1969. The effects of grazing by sea urchinsStrongylocentrotus ssp., on benthic algal populations. Limnol. Oceanogr.14, 710–719.

    Google Scholar 

  • Pamatmat, M. &Fenton, D., 1968. An instrument for measuring subtidal benthic metabolism in situ. Limnol. Oceanogr.13, 537–540.

    Google Scholar 

  • Patton, W. K., 1967. Studies onDomecia acantophora, a commensal crab from Puerto Rico, with particular reference to modifications of the coral host and feeding habits. Biol. Bull. mar. biol. Lab., Woods Hole132, 56–67.

    Google Scholar 

  • Piccard, J., 1966. The future of deep sea exploration. Oceanology int.1, 50–53.

    Google Scholar 

  • Poulton, E. C., Catton, M. J. &Carpenter, A., 1964. Efficiency at sorting cards in compressed air. Brit. J. ind. Med.21, 242–245.

    Google Scholar 

  • Rebikoff, D., 1967. The case for unmanned underwater systems. Sea Front.13, 130–136.

    Google Scholar 

  • Rechnitzer, A., 1967. Deep submersibles. Oceanology int.2, 24–25.

    Google Scholar 

  • Rhoads, D. C. &Young, D. K., 1971. Animal-sediment relations in Cape Cod Bay, Massachusetts. II. Reworking byMolpadia oolitica (Holothuroidea). Mar. Biol.11, 255–261.

    Google Scholar 

  • Rice, A. L. &Chapman, C. J., 1971. Observations on the burrows and burrowing behaviour of two mud dwelling decapod crustaceans,Nephrops norvegicus andGonoplax rhomboides. Mar. Biol.10, 330–342.

    Google Scholar 

  • Riedl, R., 1963. Probleme und Methoden der Erforschung des litoralen Benthos. Zool. Anz. (Suppl.)26, 505–567.

    Google Scholar 

  • —— 1967. Die Tauchmethode, ihre Aufgaben und Leistungen bei der Erforschung des Litorals; eine kritische Untersuchung. Helgoländer wiss. Meeresunters.15, 294–351.

    Google Scholar 

  • —— &Machan, R., 1972. Hydrodynamic patterns in lotic intertidal sands and their bioclimatological implications. Mar. Biol.13, 179–209.

    Google Scholar 

  • Russel, C., 1967. The ecology of some free living Ectocarpaceae. Helgoländer wiss. Meeresunters.15, 155–162.

    Google Scholar 

  • Smith, K., Burns, K. A. &Teal, J. M., 1972. In situ respiration of benthic communities in Castle Harbour, Bermuda. Mar. Biol.12, 196–199.

    Google Scholar 

  • Steinböck, O., 1942. Das Verhalten vonPlanaria alpina Dana in der Natur und im Laboratoriumsversuch. Memorie Ist. ital. Idrobiol.1, 63–75.

    Google Scholar 

  • Stephens, J. S. Jr., Johnson, R. K., Key, G. S. &McCosteer, J. E., 1970. The comparative ecology of three sympatric species of California blennies of the genusHypsoblennius Gill (Teleostomi, Bleniidae). Ecol. Monogr.40, 213–233.

    Google Scholar 

  • Svoboda, A., 1970. Simulation of oscillating water movement in the laboratory for cultivation of shallow water sedentary organisms. Helgoländer wiss. Meeresunters.20, 676–684.

    Google Scholar 

  • -- Ökologie und Systematik der GattungAglaophenia (Hydroida, Thecaphora) in der Adria. (In prep.)

  • Svoboda, B. &Svoboda, A. Verhalten und Ökologie von Garnelen der GattungPericlimenes auf Aktinien in der Adria. (In prep.)

  • Teal, J. M., 1962. Energy flow in the salt marsh ecosystem of Georgia. Ecology43, 614–624.

    Google Scholar 

  • Tolbert, W. H., Payne, R. H. &Salzman G. G., 1964. An underwater crane. Limnol. Oceanogr.9, 150–151.

    Google Scholar 

  • Velimirov, B., 1973. Orientation of the sea fanEunicella cavolinii related to water movement. Helgoländer wiss. Meeresunters.24, 163–173.

    Google Scholar 

  • Walker, B., 1967. A diver-operated pneumatic core sampler. Limnol. Oceanogr.12, 144–146.

    Google Scholar 

  • Waterman, T. &Forward, R., 1972. Field demonstration of polarotaxis in the fishZenarchopterus. J. exp. Zool.180, 33–54.

    Google Scholar 

  • Watchell, P. L., 1967. Concepts of broad and narrow attention. Psychol. Bull.68, 417–429.

    Google Scholar 

  • Weltman, G., Egstrom, G. H. &Christianson, R. H., 1967. Perceptual narrowing in divers: a preliminary study. Hum. Factors8.

  • Woods, J. D., 1971. Microoceanography. In: Underwater science. Ed. by:J. D. Woods &J. N. Lythgoe, Oxford Univ. Press, London, 291–317.

    Google Scholar 

  • —— &Lythgoe, J. N. (Eds), 1971. Underwater science. Oxford Univ. Press, London, 330 pp.

    Google Scholar 

  • Young, D. K. &Rhoads, D. C., 1971. Animal-sediment relations in Cape Cod Bay, Massachuetts. I. A transsect study. Mar. Biol.11, 242–254.

    Google Scholar 

  • Youngbluth, M. J., 1968. Aspects of the ecology and ethology of the cleaning fish,Labroides phthirophagus Randall. Z. Tierpsychol.25, 915–932.

    Google Scholar 

  • Zillioux, E. J., 1969. A continuous recirculating culture system for planktonic copepods. Mar. Biol.4, 215–218.

    Google Scholar 

  • —— &Lackie, N. F., 1970. Advances in the continuous culture of planktonic copepods. Helgoländer wiss. Meeresunters.20, 325–332.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ott, J.A. Concepts of underwater experimentation. Helgolander Wiss. Meeresunters 24, 54–77 (1973). https://doi.org/10.1007/BF01609499

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01609499

Keywords