Skip to main content
  • General Aspects
  • Published:

A unifying principle in the study of life on the sea floor

Ein vereinheitlichendes Prinzip bei der Erforschung des Lebens auf dem Meeresboden

Kurzfassung

Die Wirkungen der Wasserbewegung auf die Ökologie des Meeresbodens werden kurz umrissen. Im Vordergrund stehen Betrachtungen über die Sedimentablagerung und ihre Strukturierung. Die Relationen der benthonischen Lebensgemeinschaften zur Größe der Sedimentpartikel, die eine Funktion der Intensität der Wasserbewegung bilden, werden charakterisiert. Es wird angenommen, daß eine Beschreibung der Wasserbewegung zusammen mit einer Charakteristik der Sedimentbeschaffenheit die Grundlage für eine einheitliche Klassifizerung der Lebensgemeinschaften am Meeresboden darstellen könnte.

Summary

1. This paper considers effects of water movement on the ecology of the sea floor and stresses the universal presence of water movement in ocean basins.

2. The modern-day zone of the sedimentary environment is delimited within the ocean basin and the interaction of water movement and sediment deposition discussed.

3. An extension of theWentworth scale of particle size analysis is proposed for use in the description of a substrate continuum based on theoretically perfect hydrologic sorting.

4. Disruptions of a perfect system of deposition in nature are indicated, but general correlations between range of water movement and grade of deposit are established.

5. Examples of physico-chemical gradients which vary with the grade of deposit and velocity of water movements are described. The colonization of these habitats by the biota is indicated.

6. It is suggested that a description of water movements in the vicinity of modern-day sediments could be correlated with the range of life forms observed in the sedimentary continuum, to form a basis for a universal classification of living systems on the ocean floor.

Literature cited

  • Bacescu, M. C., 1972. Substratum: Animals. In: Marine ecology. Ed. byO. Kinne. Wiley-Interscience, London1 (3), 1291–1313.

    Google Scholar 

  • Drew, E., 1971. Marine botany. In: Underwater science. Ed. byI.D. Woods &J.N. Lythgoe. Oxford Univ. Press, London, 330 pp.

    Google Scholar 

  • Duxbury, A. C.. 1971. The earth and its oceans. Addison-Wesley, London, 381 pp.

    Google Scholar 

  • Ellis, A. J. &Lee, C. H., 1919. Geology and ground waters of the western part of San Diego County, California. Supply Pap. U.S. geol. Surv.446, 121–123.

    Google Scholar 

  • Fenchel, T. M., 1969. The ecology of marine microbenthos. IV: Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna communities with special reference to the ciliated Protozoa. Ophelia6, 1–182.

    Google Scholar 

  • —— &Riedl, R. J., 1970. The sulfide system: a new biotic community underneath the oxydized layer of marine sand bottoms. Mar. Biol.7, 255–268.

    Google Scholar 

  • Fleming, N. C., 1972. Geomorphology of the sea floor. In: Underwater science. Ed. byJ. D. Woods &J. N. Lythgoe. Oxford Univ. Press, London, 330 pp.

    Google Scholar 

  • Fraser, H. J., 1935. Experimental study of porosity and permeability of clastic sediments. Geology43, 910–1010.

    Google Scholar 

  • Gerlach, S., 1972. Substratum: General introduction. In: Marine ecology. Ed. byO. Kinne. Wiley-Interscience, London1 (3), 1245–1250.

    Google Scholar 

  • Hartog, C. den, 1972. Substratum: Multicellular plants. In: Marine ecology. Ed. byO. Kinne. Wiley-Interscience, London1 (3), 1277–1289.

    Google Scholar 

  • Hayes, M. O., 1967. Relationship between coastal climate and bottom sediment type on the inner Continental Shelf. Mar. Geol.5, 11–132.

    Google Scholar 

  • Heezen, B. C. &Hollister, C., 1964. Deep sea current evidence from abyssal sediments. Mar. Geol.2, 141–174.

    Google Scholar 

  • —— &Ewing, M. 1959. The floors of the ocean. 1. North Atlantic. Spec. Pap. geol. Soc. Am.65, 1–122.

    Google Scholar 

  • Hjulstrom, F., 1939. Transportation of detritus by moving water 5–31. In: Recent marine sediments. Ed. byP. D. Trask. Dover, New York, 736 pp.

    Google Scholar 

  • Jørgensen, C. B., 1966. The biology of suspension feeding. Pergamon Press, Oxford, 357 pp.

    Google Scholar 

  • Krumbein, W. C., 1936. The mechanical analysis of fine grained sediments. J. sedim. Petrol.2, 140–149.

    Google Scholar 

  • —— 1939. Graphic presentation and statistical analysis of sedimentary data. In: Recent marine sediments. Ed. byP. D. Trask. Dover, New York, 558–591.

    Google Scholar 

  • Morgans, J. F. C., 1956. Notes on the analysis of shallow water soft substrata. J. Anim. Ecol.25, 367–387.

    Google Scholar 

  • Newell, R. C., 1970. Biology of intertidal animals. Logos Press, London, 555 pp.

    Google Scholar 

  • Needham, H. D., 1962. Ice-raffed rocks from the Atlantic Ocean off the coast of the Cape of Good Hope. Deep Sea Res.9, 475–486.

    Google Scholar 

  • Pratje, O., 1950. Die Bodenbedeckung des Englischen Kanals und die maximalen Gezeitenstromgeschwindigkeiten. Dt. hydrogr. Z.3, 201–205.

    Google Scholar 

  • Reuszer, H. W., 1933. Distribution of bacteria and their role in the cycle of life in the sea. III. Distribution of bacteria in ocean waters and muds about Cape Cod. Biol. Bull. mar. biol. Lab., Woods Hole.65, 480–497.

    Google Scholar 

  • Riedel, W. R., 1954. The age of the sediment collected at Challenger (1875) Stn. 225 and the distribution ofEthmodiscus rex. (Rattray). Deep Sea Res.1, 170–175.

    Google Scholar 

  • Riedl, R., 1969. Marinbiologische Aspekte der Wasserbewegung. Mar. Biol.4, 62–78.

    Google Scholar 

  • —— 1971a. Water Movement: General Introduction. In: Marine ecology. Ed. byO. Kinne Wiley-Interscience, London,1 (2), 1085–1088.

    Google Scholar 

  • —— 1971b. Water Movement: Animals. In: Marine ecology. Ed. byO. Kinne. Wiley-Interscience, London.1 (2), 1123–1149.

    Google Scholar 

  • Riley, J. P. &Chester, R., 1971. Introduction to marine chemistry. Acad. Press, London, 465 pp.

    Google Scholar 

  • Schwenke, H., 1971. Water Movement: Plants. In: Marine ecology. Ed. byO. Kinne. Wiley-Interscience, London,1 (2), 1091–1121.

    Google Scholar 

  • Selman, A. W. &Hotchkiss, M., 1938. The oxidation of organic matter in marine sediments by bacteria. J. mar. Res.1, 101–118.

    Google Scholar 

  • Sorokin, J. I., 1964. On the primary production and bacterial activities in the Black Sea. J. Cons. perm. int. Explor. Mer.24, 41–60.

    Google Scholar 

  • Stride, A. H., 1963. Current swept sea floors near the southern half of Great Britain. Q. Jl. geol. Soc. Lond.119, 175–199.

    Google Scholar 

  • Sverdrup, H. U., Johnson, M. W. &Fleming, R. H., 1963. The oceans, their physics, chemistry, and general biology. Prentice-Hall, Englewood Cliffs, N. J., 1087 pp.

    Google Scholar 

  • Thorson, G., 1966. Some factors influencing the recruitment and establishment of marine benthic communities. Neth. J. Sea Res.3, 267–293.

    Google Scholar 

  • —— 1971. Life in the sea. McGraw Hill, New York, 256 pp.

    Google Scholar 

  • Udden, J. A., 1898. Mechanical composition of wind deposits. Augustana Libr. Publ.1.

  • Wentworth, C. K., 1922. A scale of grade and class terms for clastic sediments. J. Geol.30, 377–392.

    Google Scholar 

  • ZoBell, C. E., 1938. Studies on the bacterial flora of marine bottom sediments. J. sedim. Petrol.8, 10–18.

    Google Scholar 

  • —— 1972. Substratum: Bacteria. In: Marine ecology. Ed. byO. Kinne. Wiley-Interscience, London,1 (3), 1251–1270.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, D.J. A unifying principle in the study of life on the sea floor. Helgolander Wiss. Meeresunters 24, 102–111 (1973). https://doi.org/10.1007/BF01609503

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01609503

Keywords