Skip to main content
  • Ecology And Behaviour
  • Published:

Behaviour as part of ecological adaptation

Verhalten als Teil ökologischer Anpassung. In-situ-Untersuchungen im Korallenriff

In situ studies in the coral reef

Kurzfassung

Der Einfluß des Lebensraumes als Evolutionsfaktor des Verhaltens läßt sich durch Artenvergleich erschließen. Verhaltensweisen sind Teil der ökologischen Anpassung. Nicht verwandte Tiere, die in ähnlichen Biotopen leben, zeigen oft Verhaltenskonvergenzen; verwandte Tiere in unterschiedlichen Biotopen dagegen Verhaltensdivergenzen. Im Korallenriff wurden analoge und homologe Verhaltensweisen an den Funktionskreisen Nahrungserwerb (Planktonfang bei Seeanemonen, kriechenden Kammquallen, Schlangensternen und Röhrenaalen), Beutefang und Feindvermeidung (bei einigen benthonischen Invertebraten) und Sozialverhalten (bei Korallenbarschen) untersucht. Auch Sozialstrukturen sind ökologische Anpassungen. Monogamie und Plakatfarben der im Riff besonders zahlreich vertretenen Schmetterlingsfische werden als Fortpflanzungsisolationsmechanismen interpretiert. Sie ermöglichen das Nebeneinander vieler sympatrischer Arten.

Summary

1. An animal's behaviour represents part of its ecological adaptation to the environment (inanimate surroundings, food, enemies, conspecifics and animals of other species).

2. In the case of feeding, plankton filter feeders are referred to which exhibit identical activity periods, the same choice of habitats and comparable types of movement during feeding; this parallelism is interpreted as adaptation to the mode of nourishment. Similarity in feeding behaviour is indicative of convergent development. In ophiurids, water-current filtration appears to be an ancient physlogenetic characteristic. It is present in numerous species, indicating that this type of behaviour is homologous. Garden eels (Heterocongridae) are also plankton feeders. Their mode of feeding reveals analogies to that of marine benthonic invertebrates. Fishes which feed on sea urchins exemplify adaptations to prey capture and enemy avoidance. Sea urchins have developed adaptive protections against being preyed upon; these tend to result in escaping potential predators or preventing contact with them. Nocturnal activity appears to be an adaptation leading to enemy avoidance. Behaviour patterns of predators are described and compared. Preying on sea urchins appears to be a convergent development based on pre-adaptations in behaviour patterns and morphological structures. Particular adaptations are always based on characteristics already present.

3. Social behaviour is also part of the ecological adaptation of an animal to its environment. The social behaviour of the Pomacentridae is cited as example. Studies on the monogamous anemone fishAmphiprion bicinctus showed that its well-developed aggressive behaviour to both conspecifics and non-conspecifics can be easily released.A. bicinctus drives away all large fishes from its territory, including predators of the anemone. Well-developed intraspecific aggression necessitates effective aggression inhibition with respect to the sexual partner. The potential aggression of one member of the pair must be continually neutralised by submissive behaviour on the part of its mate. Members of a pair recognise each other individually. In situ experiments showed that they recognise the partner mainly through visual characteristics. Comparison of social behaviour inA. bicinctus with that of other pomacentrids should reveal adaptations to life in the narrow confines of the sea anemone.

4. Butterfly fishes (Chaetodontidae), which live in coral reefs, are monogamous. Their social structure and conspicuous coloration are considered as adaptations to extremely high species densities (up to 14 sympatric species), which are ecologically specialised in various ways. Continual monogamy and conspicuous coloration enable sympatric species to live in the same environment. The difference in coloration between the juveniles and adults is considered species camouflage, a mechanism enabling the juveniles to survive and reach maturity within the home range of the adults.

Literature cited

  • Allen, G. R., 1972. The anemone fishes. T.F.H. Publs, Neptune City, N.Y., 288 p.

    Google Scholar 

  • Bakus, G. J., 1968. Defensive mechanisms and ecology of some tropical holothurians. Mar. Biol.2, 23–32.

    Google Scholar 

  • Casimir, M. &Fricke, H. W., 1971. Zur Funktion, Morphologie und Histochemie der Schwanzdrüse bei Röhrenaalen (Pisces, Apodes, Heterocongridae). Mar. Biol.9, 339–346.

    Google Scholar 

  • Castle, P. H. J., 1967. Heterocongrine eels in the Southwest Pacific. Rec. Dom. Mus. Wellington6, 5–12.

    Google Scholar 

  • Clarke, E., 1972. The Red Seas garden of eels. Natn. geogr. Mag.142, 724–735.

    Google Scholar 

  • Davis, W., 1966. Observations on the biology of the ophiuroidAstrophyton muricatum. Bull. mar. Sci.16, 435–444.

    Google Scholar 

  • Eibl-Eibesfeldt, J., 1960. Beobachtungen und Versuche an Anemonenfischen. Z. Tierpsychol.17, 1–10.

    Google Scholar 

  • Fishelson, L., 1965. Observations and experiments on the Red Sea anemones and their symbiotic fishAmphiprion bicinctus. Contr. Knowl. Red Sea39, 3–16.

    Google Scholar 

  • Freihofer, W. C., 1966. New distributional records of the butterflyfishChaetodon falcifer. Stanford ichthyol. Bull.8, 207.

    Google Scholar 

  • Fricke, H. W., 1966. Ner Nahrungserwerb des GorgonenhauptesAstroboa nuda. Natur Mus., Frankf.96, 501–510.

    Google Scholar 

  • -- 1968. Beiträge zur Biologie der GorgonenhäupterAstrophyton muricatum undAstroboa nuda. Math. nat. Diss., FU Berlin. 107 pp.

  • —— 1969. Biologie et comportement deGorgasia sillneri (Klausewitz) etTaenioconger hassi (Klausewitz, Eibl-Eibesfeldt) (Teleosteen). C. r. hebd. Séanc. Acad. Sci., Paris269, 1678–1680.

    Google Scholar 

  • —— 1970a. Neue kriechende Ctenophoren der GattungCoeloplana aus Madagaskar. Mar. Biol.5, 225–238.

    Google Scholar 

  • —— 1970b. Contribution à l'étude des ctenophores platyctenides de Madagaskar —Ctenoplana (Diploctena s. gen.)neritica n. sp. etCoeloplana (Benthoplana n. s. gen.)meteoris (Thiel). Cah. Biol. mar.12, 57–75.

    Google Scholar 

  • —— 1970c. Beobachtungen über das Verhalten und Lebensweise des im Sand lebenden SchlangensternesAmphioplus sp. Helgoländer wiss. Meeresunters.21, 124–133.

    Google Scholar 

  • —— 1970d. Ökologische und verhaltensbiologische Beobachtungen an den RöhrenaalenGorgasia sillneri undTaenioconger hassi. Z. Tierpsychol.27, 1076–1099.

    Google Scholar 

  • —— 1971. Fische als Feinde tropischer Seeigel. Mar. Biol.9, 328–338.

    Google Scholar 

  • —— 1972. Korallenmeer — Verhaltensforschung am tropischen Riff. Belser, Stuttgart, 223 pp.

    Google Scholar 

  • -- Individual recognition: field studies onAmphiprion bicinctus (in press).

  • Hiatt, R. W. &Strasburg, D. W., 1960. Ecological relationships of the fish fauna on coral reefs of the Marshall Islands. Ecol. Monogr.30, 65–127.

    Google Scholar 

  • Klausewitz, W. &Eibl-Eibesfeldt, I., 1959. Neue Röhrenaale von den Malediven und Nikobaren. Senckenberg. biol.40, 135–153.

    Google Scholar 

  • Lorenz, K., 1962. The function of color in corall reef fishes. Proc. R. Instn Gt Br.39, 282–296.

    Google Scholar 

  • —— 1963. Das sogenannte Böse. Borotha-Schoeler, Wien, 391 pp.

    Google Scholar 

  • Magnus, D. B. E., 1963a. Der FedersternHeterometra savigny im Roten Meer. Natur Mus., Frankf.93, 355–368.

    Google Scholar 

  • —— 1963b. Ãœber das Abweiden der Flutwasseroberfläche durch den SchlangensternOphiocoma scolopendrina. Zool. Anz. (Suppl.)26, 471–481.

    Google Scholar 

  • —— 1964a. Wasserströmung und Nahrungserwerb bei Stachelhäutern des Roten Meeres. Ber. phys.-med. Ges. Würzb.71, 128–141.

    Google Scholar 

  • —— 1964b. Gezeitenströmung und Nahrungsfiltration bei Ophiouroiden und Crinoiden. Helgoländer wiss. Meeresunters.10, 104–117.

    Google Scholar 

  • Mariscal, R. N., 1970. The nature of the symbiosis between Indo-Pacific anemone fishes and sea anemones. Mar. Biol.6, 58–65.

    Google Scholar 

  • Randall, J. E., 1967. Food habits of reef fishes of the West Indies. Stud. trop. Oceanogr.5, 665–847.

    Google Scholar 

  • —— &Hartman, W. D., 1968. Sponge-feeding fishes of the West Indies. Mar. Biol.1, 216–225.

    Google Scholar 

  • Reese, E. S., 1964. Ethology and marine zoology. Oceanogr. mar. Biol.2, 455–488.

    Google Scholar 

  • Snyder, N. &Snyder, H., 1970. Alarm response ofDiadema antillarum. Science, N.Y.168, 276–278.

    Google Scholar 

  • Tsurnamal, M. &Marder, J., 1966. Observations on the basket starAstroboa nuda on coral reefs at Elat (Gulf of Aquaba). Israel Jl Zool.15, 9–17.

    Google Scholar 

  • Wickler, W., 1959. Die ökologische Anpassung als ethologisches Problem. Naturwissenschaften46, 505–509.

    Google Scholar 

  • —— 1961. Ökologie und Stammesgeschichte von Verhaltensweisen. Fortschr. Zool.13, 303–365.

    Google Scholar 

  • —— 1967. Vergleichende Verhaltensforschung und Phylogenetik. In: Die Evolution der Organismen. Hrsg. vonG. Heberer. Fischer, Stuttgart,1, 420–508.

    Google Scholar 

  • —— 1969. Sind wir Sünder? Droemer, München, 247 pp.

    Google Scholar 

  • —— 1971. Soziales Verhalten als ökologische Anpassung. Verh. dt. zool. Ges.64, 291–304.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fricke, H.W. Behaviour as part of ecological adaptation. Helgolander Wiss. Meeresunters 24, 120–144 (1973). https://doi.org/10.1007/BF01609505

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01609505

Keywords