Skip to main content
  • Ecology And Behaviour
  • Published:

Symbiotic pathways of carbon in coral reef ecosystems

Symbiotische Wege des Kohlenstoffs in Korallenriff-Ökosystemen. Gegenwärtiger Status und zukünftige Aussichten

Present status and future prospects

Kurzfassung

Die metabolische Leistungsfähigkeit des Ökosystems Korallenriff basiert zu einem wesentlichen Teil auf der unmittelbaren zellulären Integration von Primärproduzenten und Konsumenten in der symbiotischen Verbindung von Algen und Korallen. Diese Form des Zusammenlebens zweier Organismen stellt ein charakteristisches Merkmal der tropischen Korallenriffe dar und spielt eine Schlüsselrolle bei der Aufrechterhaltung des Ernährungsgleichgewichts innerhalb dieses Ökosystems. Die gegenwärtigen Kenntnisse in bezug auf die Primärproduktion und den Weg des durch die Symbionten fixierten Kohlenstoffs werden besprochen. Methoden für In-situ-Forschungen werden an Hand der bisher erzielten Ergebnisse bewertet, und die Aussichten, die Energietransformation in den Lebensgemeinschaften im Korallenriff zu erfassen, diskutiert.

Summary

1. Productivity of algal-invertebrate symbiosis in coral reef ecosystems is discussed, and current methods of analysis described.

2. Translocation within the symbiosis, apparent rates of turnover, the retention time of carbon fixed in photosynthesis and the excretory pathways leading to the reef community are examined. Possible mechanisms for recycling carbon back to the level of the primary producers are presented.

3. Future prospects for in situ studies of the “coral reef problem”, and the requirements for substantiative data in these areas are discussed.

Literature cited

  • Bakus, G. J., 1969. Energetics and feeding in shallow marine waters. Int. Rev. gen. exp. Zool.4, 275–239.

    Google Scholar 

  • Bardach, J. E., 1961. Transport of calcareous fragments by reef fishes. Science, N. Y.133, 98–99.

    Google Scholar 

  • Barnes, D. J. &Taylor, D. L., 1973. In situ studies of calcification and photosynthetic carbon fixation in the coral,Montastrea annularis. Helgoländer wiss. Meeresunters.24, 284–291.

    Google Scholar 

  • Cooksey, K. E. &Cooksey, B., 1972. Turnover of photosynthetically fixed carbon in reef corals. Mar. Biol.15, 289–292.

    Google Scholar 

  • DiSalvo, L. H., 1971a. Regenerative functions and microbial ecology of coral reefs: labelled bacteria in a coral reef microcosm. J. exp. mar. Biol. Ecol.7, 123–136.

    Google Scholar 

  • —— 1971b. Regenerative functions and microbial ecology of coral reefs. I. Assays for microbial population. Can. J. Microbiol.17, 1081–1089.

    Google Scholar 

  • Franzisket, L., 1964. Die Stoffwechselintensität der Riffkorallen und ihre ökologische, phylogenetische und soziologische Bedeutung. Z. vergl. Physiol.49, 91–113.

    Google Scholar 

  • —— 1969. The ratio of photosynthesis to respiration of reef building corals during a 24 hour period. Forma Functio.1, 153–158.

    Google Scholar 

  • Gordon, M. S. &Kelly, H. M., 1962. Primary productivity of an Hawaiian coral reef: a critique of flow respirometry in turbulent waters. Ecology43, 473–480.

    Google Scholar 

  • Goreau, T. F., Goreau, N. I. &Yonge, C. M., 1971. Reef corals: autotrophs of heterotrophs? Biol. Bull. mar. biol. Lab., Woods Hole141, 247–260.

    Google Scholar 

  • —— —— —— &Neumann, Y., 1970. On the feeding and nutrition inFungiacara eilatensis Soot-Ryen (Bivalvia, Mytilidae), a commensal living in fungiid corals. J. Zool.160, 159–172.

    Google Scholar 

  • Johannes, R. E., 1967. Ecology of organic aggregates in the vicinity of a coral reef. Limnol. Oceanogr.12, 189–195.

    Google Scholar 

  • —— &Kuenzel, N. T., 1970. The role of zooplankton in the nutrition of some scleractinian corals. Limnol. Oceanogr.15, 579–586.

    Google Scholar 

  • Kanwisher, J. W. &Wainwright, S. A., 1967. Oxygen balance in some reef corals. Biol. Bull. mar. biol. Lab., Woods Hole133, 378–390.

    Google Scholar 

  • Kohn, A. J. &Helfrich, P., 1957. Primary organic productivity of a Hawaiian coral reef. Limnol. Oceanogr.2, 241–251.

    Google Scholar 

  • Marshall, N., 1965. Detritus over the reef and its potential contribution to adjacent waters of Eniwetok Atoll. Ecology46, 343–344.

    Google Scholar 

  • Milliman, J. D. &Mahnken, C. V. W., 1969. Reef productivity measurements. Atoll Res. Bull.129, 23–41.

    Google Scholar 

  • Muscatine, L., 1972. Influence of zooxanthellae on productivity and calcification in reef corals: critique and perspectives. In: Symbiosis in the Sea. Ed. byW. B. Vernberg &F. J. Vernberg. Univ. S. Carolina Press, Columbia. (In press).

    Google Scholar 

  • —— 1973. Nutrition of corals. In: Biology of coral reefs. Ed. byR. Endean. Acad. Press, New York2 (In press).

    Google Scholar 

  • —— &Cernichiari, E., 1969. Assimilation of photosynthetic products of zooxanthellae by a reef coral. Biol. Bull. mar. biol. Lab., Woods Hole137, 506–523.

    Google Scholar 

  • —— &Cernichiari, E., 1972. Some factors influencing selective release of soluble organic material by zooxanthellae from reef corals. Mar. Biol.13, 298–308.

    Google Scholar 

  • Odum, E. P., 1971. Fundamentals of ecology. Saunders, Philadelphia. 574 pp.

    Google Scholar 

  • Odum, H. T. &Odum, E. P., 1955. Trophic structure and productivity of a windward coral reef community on Eniwetok Atoll. Ecol. Monogr.25, 291–320.

    Google Scholar 

  • —— —— 1959. Fundamentals of ecology. Saunders, Philadelphia, 546 pp.

    Google Scholar 

  • —— &Rivero, J., 1959. Measurements of productivity of turtle grass flats, reefs and the Bahia Fosforescente of Southern Puerto Rico. Publs. Inst. mar. Sci. Univ. Tex.6, 159–170.

    Google Scholar 

  • Park, P. K., 1969. Oceanic CO2 system: An evaluation of ten methods of investigation. Limnol. Oceanogr.15, 179–186.

    Google Scholar 

  • Roffman, B., 1968. Patterns of oxygen exchange in some Pacific corals. Comp. Biochem. Physiol.27, 405–418.

    Google Scholar 

  • Sargent, M. C. &Austin, T. S., 1949. Organic productivity of an atoll. Trans. Am. geophys. Un.30, 245–249.

    Google Scholar 

  • —— —— 1954. Biologic economy of coral reefs. Prof. Pap. U.S. geol. Surv.260-E, 293–300.

    Google Scholar 

  • Smith, D., Muscatine, L. &Lewis, D., 1969. Carbohydrate movement from autotrophs to heterotrophs in parasitic and mutualistic symbiosis. Biol. Rev.44, 17–90.

    Google Scholar 

  • Smith, S. V., 1972. Eniwetok Atoll: CO2 system on a coral reef. Limnol. Oceanogr. (In press).

  • Stoddart, D. R., 1969: Ecology and morphology of recent coral reefs. Biol. Rev.44, 433–498.

    Google Scholar 

  • Strickland, J. D. H. &Parsons, T. R., 1965. A manual of seawater analysis. Bull. Fish. Res. Bd Can.125, 1–202.

    Google Scholar 

  • Taylor, D. L., 1969. On the regulation and maintenance of algal numbers in zooxanthellae-coelenterate symbiosis, with a note on the relationship inAnemonia sulcata. J. mar. biol. Ass. U.K.49, 1057–1065.

    Google Scholar 

  • —— 1971. On the symbiosis betweenAmphidinium klebsii (Dinophyceae) andAmphiscolops langerhansi (Turbellaria: Acoela). J. mar. biol. Ass. U.K.51, 301–313.

    Google Scholar 

  • —— 1972. Symbiotic marine algae; taxonomy and biological fitness. In Symbiosis in the Sea. Ed. byW. B. Vernberg &F. J. Vernberg. Univ. S. Carolina Press, Columbia. (In press).

    Google Scholar 

  • -- 1973. Cellular interactions of algal-invertebrate symbiosis. Adv. mar. Biol.11 (In press).

  • Trench, R. K., 1971a. The physiology and biochemistry of zooxanthellae symbiotic with marine coelenterates. I. Assimilation of photosynthetic products of zooxanthellae by two marine coelenterates. Proc. R. Soc. (B)177, 225–235.

    Google Scholar 

  • —— 1971b. The physiology and biochemistry of zooxanthellae symbiotic with marine coelenterates. II. Liberation of fixed14C by zooxanthellaein vitro. Proc. R. Soc. (B)177, 237–250.

    Google Scholar 

  • —— 1971c. The physiology and biochemistry of zooxanthellae symbiotic with marine coelenterates. III. The effect of homogenates of host tissues on the excretion of photosynthetic productsin vitro by zooxanthellae from two marine coelenterates. Proc. R. Soc. (B)177, 251–264.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, D.L. Symbiotic pathways of carbon in coral reef ecosystems. Helgolander Wiss. Meeresunters 24, 276–283 (1973). https://doi.org/10.1007/BF01609518

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01609518

Keywords