Skip to main content
  • Plants
  • Published:

Potential bioassay of natural seawaters and influence of certain trace elements on the growth of phytoplankton organisms

Potentielles Bioassay natürlichen Meerwassers und Einfluß bestimmter Spurenelemente auf das Wachstum von Phytoplanktonorganismen

Kurzfassung

Zum Zweck einer Gütebeurteilung wurden Wasserproben, die aus dem Ärmelkanal und dem Atlantik südlich Irlands im Jahr 1949 zu verschiedenen Jahreszeiten entnommen worden waren, mit N, P und Fe angereichert und durch Kulturen der DiatomeenChaetoceros didymus, Phaeodactylum cornutum und einer nicht determinierten Cryptophyceen-Art getestet. Die Vermehrungsrate vonChaetoceros didymus diente als Kriterium zur Beurteilung der Wassergüte, die in Abhängigkeit von den Stationen und den Jahreszeiten erhebliche Unterschiede aufwies. Wasser aus dem Gebiet südlich Irlands induzierte im Test mitChaetoceros didymus Auxosporenbildung, die durch Zugabe von Cu gehemmt werden konnte. Li-Zusatz zu natürlichem und künstlichem Seewasser bewirkte eine Verlängerung der Zellen vonChaetoceros didymus; der gleiche Effekt wurde auch bei entsprechenden Versuchen mit der ChlorophyceeStichococcus spec. festgestellt.

Summary

1. Natural sea water collected at different months from the English Channel at Plymouth and from the Celtic Sea were enriched with N, P, Fe and bioassayed with unialgal cultures of the pelagic diatomChaetoceros didymus, a reddish flagellate “A” andPhaeodactylum tricornutum.

2. The first two organisms together with the green algaStichococcus sp. (cf.S. cylindricus Butcher) were isolated from the Plymouth plankton and subcultured in artificial sea water, and thePhaeodactylum cornutum was supplied from the strain culture of the Plymouth Laboratory. The relative growth constant ofChaetoceros didymus was taken as an index to classify the different waters according to their suitability for the growth of this diatom. These waters could then be classified in the following order: (a) Celtic sea water of March, (b) Plymouth water of February, (c) Celtic sea water of May, (d) Plymouth water of July, (e) Celtic sea water of July and (f) Plymouth water of March.

3. Mixing of “good” and “bad” waters improved the qualities of the bad water, but growth again declined after 10–15 days.

4. Artificial sea water with soil extract approximates the qualities of “good” natural sea water.

5. Properties of the “bad” or “sterile” waters could be improved by additions of Cu, particularly when this metal in the natural water was impoverished.

6. Celtic Sea waters of May, July and (to a lesser extent) of March, induced auxospore formation inChaetoceros didymus. This capacity was inhibited by additions of traces of Cu.

7. Li causes elongation of cells in bothChaetoceros didymus andStichococcus sp. The morphological effects of this element on phytoplankton cells require further studies.

8.Phaeodactylum tricornutum and flagellate “A” gave similar results to those ofChaetoceros didymus with regard to the bioassayed waters employed.

9.Phaeodactylum tricornutum andStichococcus sp. appear to be sensitive to traces of Cu, while the latter species, together with flagellate “A”, can tolerate high concentrations of Li.

10. Evidence has also been obtained that the ageing of sea water could improve its qualities.

Literature cited

  • Allen, E. J., 1914. On the culture of the plankton diatomThalassiosira gravida.J. mar. biol. Ass. U.K. 10, 417–439.

    Google Scholar 

  • —— &Nelson, E. W., 1910. On the artificial culture of marine plankton organisms.J. mar. biol. Ass. U.K. 8, 285–295.

    Google Scholar 

  • Atkins, W. R. G., 1933. The rapid estimation of the copper content of sea water.J. mar. biol. Ass. U.K. 19, 63–66.

    Google Scholar 

  • Bruchmayer-Berkenbusch, H., 1955. Die Beeinflussung der Auxosporenbildung inMelosira nummuloides durch Außenfaktoren.Arch. Protistenk. 100, 183–211.

    Google Scholar 

  • Butcher, R. W., 1952. Contribution to our knowledge of the smaller marine algae.J. mar. biol. Ass. U.K. 31, 175–191.

    Google Scholar 

  • Chu, S. P., 1946. Note on the technique of making bacteria-free cultures of marine diatoms.J. mar. biol. Ass. U.K. 26, 296–302.

    Google Scholar 

  • Droop, M. R., 1957. Auxotrophy and organic compounds in the nutrition of marine phytoplankton.J. gen. Microbiol. 16, 286–293.

    Google Scholar 

  • —— 1962. Organic micronutrients.In: Physiology and biochemistry of algae. Ed. by R. A. Lewin. Acad. Pr., New York, 141–159.

    Google Scholar 

  • —— (Discussion Leader), 1966. Nutritional factors.In: Marine biology. Proceedings of the 2nd International interdisciplinary Conference, 1962. Ed. by C. H. Oppenheimer. N.Y. Academy of Sciences, New York, 85–112.

    Google Scholar 

  • Erben, K., 1962. Sporulation.In: Physiology and biochemistry of algae. Ed. by R. A. Lewin. Acad. Pr., New York, 701–710.

    Google Scholar 

  • Fogg, G. E., 1965. Algal cultures and phytoplankton ecology. The Athlone Press, London, 126 pp.

    Google Scholar 

  • Hayward, J., 1968. Studies on the growth ofPhaeodactylum tricornutum. III. Effect of iron on growth.J. mar. biol. Ass. U.K. 48, 295–302.

    Google Scholar 

  • Hendey, N. I., 1954. Note on the PlymouthNitzschia culture.J. mar. biol. Ass. U.K. 33, 335–339.

    Google Scholar 

  • Johnston, R., 1963. Sea water, the natural medium of Phytoplankton. I. General features.J. mar biol. Ass. U.K. 43, 427–445.

    Google Scholar 

  • —— 1964. Sea water ... II. Trace metals and chelation and general discussion.J. mar. biol. Ass. U.K. 44, 87–109.

    Google Scholar 

  • Kylin, A., 1943. The influence of trace elements on the growth ofUlva lactuca.K. fysiogr. Sällsk. Lund Förh. 13 (19), 185–192.

    Google Scholar 

  • —— 1945, The nitrogen sources and the influence of manganese on the nitrogen assimilation ofUlva lactuca.K. fysiogr. Sällsk. Lund Förh. 15 (4), 27–35.

    Google Scholar 

  • Kylin, H., 1941. Biologische Analyse des Meerwassers.K. fysiogr. Sällsk. Lund Förh. 11 (21), 217–232.

    Google Scholar 

  • —— 1943. Über die Ernährung vonUlva lactuca.K. fysiogr. Sällsk. Lund Förh. 13 (21), 202–214.

    Google Scholar 

  • —— 1946. Über den Zuwachs der Keimlinge vonUlva lactuca in verschiedenen Nährflüssigkeiten.K. fysiogr. Sällsk. Lund Förh. 16 (23), 225–229.

    Google Scholar 

  • Matudaira, T., 1939. The physiological property of sea water considered from the effect upon growth of diatoms, with special reference to its vertical and seasonal changes.Bull. Jap. Soc. scient. Fish 8 (4), 187–193.

    Google Scholar 

  • Pintner, I. J. &Provasoli, L., 1963. Nutritional characteristics of some chrysomonads.In: Symposium on marine microbiology. Ed. by C. H. Oppenheimer. C. C. Thomas, Springfield, Ill., 114–121.

    Google Scholar 

  • Provasoli, L., 1958. Nutrition and ecology of protozoa and algae.A. Rev. Microbiol. 12, 279–308.

    Google Scholar 

  • —— 1963. Organic regulation of phytoplankton fertility.In: The sea. Ed. by M. N. Hill. Wiley & Sons, New York,2, 165–219.

    Google Scholar 

  • —— &Droop, M. R., 1957. The development of artificial media for marine algae.Arch. Microbiol. 25, 392–428.

    Google Scholar 

  • Runnström, J., 1935. An analysis of the action of Lithium on sea urchin development.Biol. Bull. mar. biol. Lab., Woods Hole 68, 378–384.

    Google Scholar 

  • Russell, F. S., 1935. On the value of certain plankton animals as indicators of water movements in the English Channel and North Sea.J. mar. biol. Ass. U.K. 20, 309–332.

    Google Scholar 

  • Soli, G., 1963. Axenic cultivation of a pelagic diatom.In: Symposium on marine microbiology. Ed. by C. H. Oppenheimer. C. C. Thomas, Springfield, Ill., 122–126.

    Google Scholar 

  • Spencer, C. P., 1954. Studies on the culture of a marine diatom.J. mar. biol. Ass. U.K. 33, 265–290.

    Google Scholar 

  • —— 1957. Utilization of trace elements by unicellular algae.J. gen. Microbiol. 16, 282–285.

    Google Scholar 

  • Stosch, H. A. von, 1954. Die Oogamie vonBiddulphia mobiliensis und die bisher bekannten Auxosporenbildung bei den Centrales.Int. bot. Congr. 8 (Paris), Sect.17, 58–68.

    Google Scholar 

  • Sverdrup, H. U., Johnson, M. W. &Fleming, R. H., 1942. The oceans. Prentice Hall, Englewood Cliffs, N. J., 1087 pp.

    Google Scholar 

  • Valera, M. de, 1940. Note on the difference in growth ofEnteromorpha species in various culture media.K. fysiogr. Sällsk. Lund Förh. 10, 52–58.

    Google Scholar 

  • Wiessner, W., 1962. Inorganic micronutrients.In: Physiology and biochemistry of algae. Ed. by R. A. Lewin. Acad. Pr., New York, 267–268.

    Google Scholar 

  • Wilson, D. P., 1951. A biological difference between natural sea waters.J. mar. biol. Ass. U.K. 30, 1–26.

    Google Scholar 

  • —— &Armstrong, F. A. J., 1952. Further experiments on biological differences between natural sea waters.J. mar. biol. Ass. U. K. 31, 335–349.

    Google Scholar 

  • —— —— 1954. Biological differences between seawaters: experiments in 1952.J. mar. biol. Ass. U.K. 33, 347–360.

    Google Scholar 

  • Wilson, D. P., 1958. Biological differences between seawaters: experiments in 1954 and 1955.J. mar. biol. Ass. U. K. 37, 331–348.

    Google Scholar 

  • —— 1961. Biological differences between seawaters: experiments in 1960.J. mar. biol. Ass. U.K. 41, 663–681.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aleem, A.A. Potential bioassay of natural seawaters and influence of certain trace elements on the growth of phytoplankton organisms. Helgolander Wiss. Meeresunters 20, 229–248 (1970). https://doi.org/10.1007/BF01609902

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01609902

Keywords