Skip to main content
  • Crustacea
  • Published:

Growth characteristics of the copepodsEurytemora affinis andE. herdmani in laboratory cultures

Wachstum vonEurytemora affinis undE. herdmani in Laboratoriumskulturen

Abstract

Die calanoiden CopepodenEurytemora affinis (Poppe) undE. herdmani Thompson &Scott wurden über zahlreiche Generationen im Laboratorium gezüchtet. Mit einem Überschuß an Algennahrung vermehrt sichE. affinis in Salzgehalten zwischen 5 und 33 ‰ und bei Temperaturen zwischen 2° und 23,5° C.E. herdmani pflanzt sich in Salzgehalten unter 15 ‰ und bei 21,5° C und höheren Temperaturen nicht fort. Diese Ergebnisse stimmen überein mit Untersuchungen im natürlichen Lebensraum und zeigen, daßE. herdmani an kälteres und salzhaltigeres Wasser gebunden ist als die weiter verbreiteteE. affinis. An den Jungtieren, die von einzelnen Weibchen erhalten worden waren, wurden die Entwicklungszeitspannen vom Ei bis zum ersten Nauplius, ersten Copepoditen, Adultus und eiertragenden Weibchen ermittelt. In 20 ‰ Salzgehalt variiert die Generationszeit beiE. affinis von etwa 105 Tagen bei 2° C bis 9 Tagen bei 23,5° C. Die entsprechenden Generationszeiten fürE. herdmani betragen 73 Tage bei 2° C und 19 Tage bei 15° C. Die Körperlänge beider Arten nimmt bei niedrigeren Temperaturen zu. Die Errechnung des Zahlenverhältnisses der Geschlechter der Jungtiere einzelner Weibchen legt die Vermutung nahe, daß die Temperatur das Geschlechtsverhältnis beeinflußt. Überlebenszeiten wurden ermittelt für Weibchen, welche unter verschiedenen Temperatur- und Salzgehaltsbedingungen gehalten worden waren. Die Lebensspannen von Weibchen beider Arten übertreffen 100 Tage bei 2° C und nehmen bei höheren Temperaturen ab. Weibchen beider Arten vermögen noch lange nach der Kopulation fertile Eier zu produzieren. Diese Beobachtungen sprechen dafür, daß kleine Lokalpopulationen möglicherweise im Herbst kopulieren, dann überwintern und daß die Weibchen im Frühjahr ohne erneute Kopulation Junge produzieren.

Summary

1. The calanoid copepodsEurytemora affinis (Poppe) andE. herdmani Thompson &Scott were cultured for numerous generations in the laboratory.

2. With excess algal food,Eurytemora affinis reproduced at salinities between 5 ‰ and 33 ‰ and at temperatures between 2° and 23.5° C. Reproduction ofE. herdmani failed at salinities below 15 ‰ and at temperatures of 19.5° C and higher.

3. Using the progeny from individual females, generation times were calculated as the time required for development from eggs to ovigerous females. At 20 ‰ salinity, generation times forEurytemora affinis ranged from about 105 days at 2° C to 9 days at 23.5° C. Corresponding generation times forE. herdmani ranged from 73 days at 2° C to 19 days at 15° C.

4. The body length of culturedEurytemora affinis was within the normal range for wild specimens. CulturedE. herdmani individuals were always smaller than wild specimens, suggesting that the culture conditions for this species were not optimal. Body lengths of both species were greater at 2° C than at 21.5° C with the exception ofE. herdmani females.

5. Low developmental temperatures increased the proportion of femaleEurytemora affinis and increased the proportion of maleE. herdmani in cultures. Possible adaptive advantages of these variations are discussed.

6. Females of both species lived longer than 100 days at 2° C, and survival time decreased at higher temperatures. Females of both species could produce fertile eggs long after mating. These results suggest the possibility that females could mate in autumn, then overwinter and produce larvae in spring without a further mating.

7. Better reproduction and faster development ofEurytemora herdmani at low temperature helps explain its more northerly distribution. The ability ofE. affinis to reproduce at temperatures approaching 25° C correlates with distribution as far south as the Gulf of Mexico. The tolerance ofE. affinis to a wide range of temperatures and salinities helps explain its great ability to colonize upper estuarine regions and even fresh water lakes.

Literature cited

  • Battaglia, B., 1959. Facteur thermique et différenciation saisonnière chez un copépode harpacticoide de la Lagune de Venise.Vie Milieu 10, 1–13.

    Google Scholar 

  • Conover, R. J., 1965. Notes on the molting cycle, development of sexual characters and sex ratio inCalanus hyperboreus.Crustaceana 8, 308–320.

    Google Scholar 

  • Corkett, C. J., 1967. Technique for rearing marine calanoid copepods in laboratory conditions.Nature 216, 58–59.

    Google Scholar 

  • Deevey, G. B., 1960. The zooplankton of the surface waters of the Delaware Bay region.Bull. Bingham oceanogr. Coll. 17 (2), 5–86.

    Google Scholar 

  • Egami, N., 1951. A note on the sex-differentiation of the marine copepodTigriopus japonicus.Ann. Zool. 24, 131–136.

    Google Scholar 

  • Engel, R. A., 1962.Eurytemora affinis, a calanoid copepod new to Lake Erie.Ohio J. Sci. 62 (5), 252.

    Google Scholar 

  • Gurney, R., 1931. British fresh-water copepoda. Vol.1. The Ray Society, London, iii, 238 pp.

    Google Scholar 

  • Haertel, L. &Osterberg, C., 1967. Ecology of zooplankton, benthos, and fishes in the Columbia River estuary.Ecology 48, 459–472.

    Google Scholar 

  • Hardy, A. C., 1924. The herring in relation to its animate environment. Part I. The food and feeding habits of the herring with special reference to the east coast of England.Fishery Invest., Lond.(Ser. 2) 7, (3), 1–53.

    Google Scholar 

  • Heinle, D. R., 1969a. The effects of temperature on the population dynamics of estuarine copepods. Ph. D. Thesis, Univ. of Maryland, College Park.

    Google Scholar 

  • —— 1969b. Culture of calanoid copepods in synthetic sea water.J. Fish. Res. Bd Can. 26, 150–153.

    Google Scholar 

  • Heron, G. A., 1964. Seven species ofEurytemora (Copepoda) from Northwestern North America.Crustaceana 7, 199–211.

    Google Scholar 

  • Jeffries, H. P., 1962. Salinity-space distribution of the estuarine copepod genusEurytemora.Int. Revue ges. Hydrobiol. 47 (2), 291–300.

    Google Scholar 

  • Johnson, M. W., 1966. The nauplius larvae ofEurytemora herdmani Thompson &Scott 1897 (Copepoda, Calanoida).Crustaceana 11, 307–313.

    Google Scholar 

  • Katona, S. K. &Moodie, C. M., 1969. Breeding ofPseudocalanus elongatus in the laboratory.J. mar. biol. Ass. U. K. 49, 743–747.

    Google Scholar 

  • Mednikov, B. M., 1961. On sex ratio in deep-water Calanoida.Crustaceana 3, 105–109.

    Google Scholar 

  • Mullin, M. M. &Brooks, E. R., 1967. Laboratory culture, growth rate, and feeding behaviour of a planktonic marine copepod.Limnol. Oceanogr. 12, 657–666.

    Google Scholar 

  • Northcote, T. G., Wilson, M. S. &Hurn, D. R., 1964. Some characteristics of Nitinat Lake, an inlet of Vancouver Island, British Columbia.J. Fish. Res. Bd Can. 21, 1069–1081.

    Google Scholar 

  • Sars, G. O., 1903. An account of the crustacea of Norway. The Museum, Bergen, Vol.4, 102–103.

    Google Scholar 

  • Takeda, N., 1950. Experimental studies on the effect of external agencies on the sexuality of a marine copepod.Physiol. Zoöl. 23, 288–301.

    Google Scholar 

  • Tollinger, M. A., 1911. Die geographische Verbreitung der Diaptomiden.Zool. Jb. (Abt. Syst).30, 1–302.

    Google Scholar 

  • Wilson, C. B., 1932. The copepods of the Woods Hole region Massachusetts.Bull. U. S. natn. Mus. 158, 1–623.

    Google Scholar 

  • Wilson, M. S. &Tash, J. C., 1966. The euryhaline copepod genusEurytemora in fresh and brackish waters of the Cape Thompson region, Chuckchi Sea, Alaska.Proc. U. S. natn. Mus. 118, 553–576.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katona, S.K. Growth characteristics of the copepodsEurytemora affinis andE. herdmani in laboratory cultures. Helgolander Wiss. Meeresunters 20, 373–384 (1970). https://doi.org/10.1007/BF01609914

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01609914

Keywords