Skip to main content
  • Mollusca
  • Published:

Some factors affecting the growth of prosobranch veligers

Sur quelques facteurs intervenant dans la croissance des véligères de Prosobranches

Extrait

Le vélum des véligères de Prosobranches recueille toutes les particules que ses cils composés peuvent maitriser. Chacune des dix espèces d'algues unicellulaires offertes aux larves deCrepidula fornicata et deNassarius reticulatus subit l'action mécanique de l'estomac. Sauf pourChlamydomonas parkeae, que les larves ne réussissent pas à détruire, et pourPhaeodactylum tricornutum dont les frustules sont perforées, les parois cellulaires sont ramollies ou fragmentées. Les cellules de la glande digestive ingèrent le contenu cellulaire y compris le pigment, mais non les débris des parois. Les pigments sont rejectés ultérieurement; ils retardent le cycle de l'activité glandulaire. La croissance est relativement bonne avec des cellules deMonochrysis lutheri et dePyramimonas grossii, qui se rompent facilement, et avecPhaeodactylum tricornutum; mais il se forme des boules fécales volumineuses qui peuvent obturer la cavité palléale; les grandes frustules dePhaeodactylum tricornutum entrainent un effet purgatif.Chlamydomonas parkeae, Brachiomonas submarina, Exuviaella pusilla etOlisthodiscus sp. sont de mauvais aliments; les deux dernières sont toxiques pour les larves, spécialementOlisthodiscus sp. Nourries deCricosphaera ap.carterae les deux espèces présentent une bonne croissance et un développement jusqu'à la métamorphose; il en est de même pourCrepidula fornicata nourrie deExuviella baltica et deNassarius reticulatus alimenté avecDunaliella primolecta. Un aliment convenable détermine un aspect particulier du comportement alimentaire. Il ne semble pas que les larves sélectionnent leur aliment lorsqu'elles reçoivent simultanément deux ou trois espèces d'algues, mais de petites cellules facilement maitrisées par le vélum sont absorbées plus fréquement que des cellules volumineuses. L'apport occasionnel d'aliments bactériens ne semble causer aucun dommage. Un aliment artificiel (par exemple la farine de blé) permet pendant 5 à 6 jours de conserver les larves et d'obtenir leur croissance. Dans toutes les expériences la température et l'éclairage, dont les fluctuations retentissent sur la croissance des larves, furent maintenus constants. La manipulation des larves se fit à l'aide de pipettes. Dans la mer les détritus organiques doivent constituer un apport alimentaire important.

Summary

1. Larvae ofCrepidula fornicata (L.) andNassarius reticulatus (L.) were used for experiments. The conditions under which they thrived proved successful for veligers of other species.

2. They were kept in glass-filtered sea water (pore size 3.0µ) in acid-clean glass containers, provided with algal foods and handled carefully by means of a pipette. Trapping larvae in a coarse filter as a means of transferring them from one vessel to another was injurious.

3. Shell length was used to estimate growth.

4. The growth of 20 veligers in 30 ml sea water (depth 8 cm) was compared with that of 333 veligers in 500 ml (depth 9 cm). Growth in the larger volume was better, but in all cases the differences were not significant at the 10% level.

5. Growth rate is influenced by light intensity. For comparing the value of different foods experiments were carried out under a constant intensity of 155 lux at the water surface. In the dark, mortality of algal cells stimulates growth of bacteria.

6. The water temperature was maintained at 12° C. Low temperatures, even 8° C, reduce the activity of veligers ofCrepidula fornicata andNassarius reticulatus; high temperatures favour bacterial growth.

7. The growth of recently hatched veligers feeding on one of 10 species of unicellular algae and on some mixtures of these was recorded for 2(C. fornicata) or 3(N. reticulatus) breeding seasons. Food was given at different concentrations (2 × 103, 20 × 103, 40 × 103 cells/ml) which were calculated from haemocytometer counts of the stock cultures, though this gives only an approximate value. Experiments lasted up to 4.5 weeks and a few for a longer period.

8.Cricosphaera ap.carterae andExuviaella baltica were the best foods forCrepidula fornicata, especially at higher concentrations, and larvae were ready to metamorphose in 40 days or less.C. ap.carterae andDunaliella primolecta were good forNassarius reticulatus, especially the former, andE. baltica consistently poorer.

9.Monochrysis lutheri andPyramimonas grossii were moderately good foods, but with these none of the larvae metamorphosed. When fed toCrepidula fornicata at high concentrations (80 × 103, 120 × 103 cells/ml) growth of the former approached that withCricosphaera ap.carterae whilst with the latter growth decreased with increased concentration. The food value ofPhaeodactylum tricornutum is lower; the large frustules irritate the gut and act as a purgative.

10.Chlamydomonas parkeae, Brachiomonas submarina, Exuviaella pusilla andOlisthodiscus sp. are poor foods; the last two are toxic.

11. When the food was 2 species of alga mixed in equal proportions the good value ofCricosphaera ap.carterae was still evident. Examination of the stomach contents showed that the larvae were not feeding selectively on this alga. When the second alga was one with smaller cells(Monochrysis lutheri orPyramimonas grossii) these were ingested in greater numbers in accordance with the ease with which the velar cilia manipulated them.

12. Algal cells are subjected to mechanical treatment in the stomach; their walls may be shattered but no fragment has been seen in the cells of the digestive gland. The resistance of cells with complete cellulose walls suggests the absence of a cellulase.

13. With some algal foods (species ofMonochrysis, Pyramimonas, Phaeodactylum) the walls produce a high proportion of faecal waste which, in less vigorous larvae, may clog the exhalant passage of the mantle cavity.

14. Plant pigments are egested by the veliger. They are intimately linked with food, taken into ingesting cells of the digestive gland and later excreted. They thus delay the cycle of events in the gland.

15. Differences in food value of the various algae may be due to differences in micronutrients and vitamins essential to growth. The fact that one species of alga may produce good growth in one species of veliger and not another must reflect either differences in requirements or in assimilation of the food.

16. Prosobranch veligers are found in numbers well below the compensation depth as well as in other areas where the density of algal cells is low. It is suggested that organic detritus in the sea is an important item of food.

Literature cited

  • Armstrong, F. A. J. &Butler, E. I., 1960a. Chemical changes in sea water off Plymouth during 1958.J. mar. biol. Ass. U.K. 39, 299–302.

    Google Scholar 

  • —— —— 1960b. Chemical changes in sea water off Plymouth during 1959.J. mar. biol. Ass. U.K. 39, 525–528.

    Google Scholar 

  • —— —— 1962. Chemical changes in sea water off Plymouth during 1960.J. mar. biol. Ass. U.K. 42, 253–258.

    Google Scholar 

  • —— —— 1963. Chemical changes in sea water off Plymouth in 1961.J. mar. biol. Ass. U.K. 43, 75–78.

    Google Scholar 

  • Bainbridge, R., 1957. The size, shape and density of marine phytoplankton concentrations.Biol. Rev. 32, 91–115.

    Google Scholar 

  • Bidwell, R. G. S., 1957. Photosynthesis and metabolism of marine algae. I. Photosynthesis of two marine flagellates compared withChlorella.Can. J. Bot. 55, 945–950.

    Google Scholar 

  • Bone, Q., 1961. The organization of the atrial nervous system ofAmphioxus (Branchiostoma lanceolatum Pallas).Phil. Trans. R. Soc. (B) 243, 241–269.

    Google Scholar 

  • Chau, Y. K., Chuecas, L. &Riley, J. P., 1967. The component combined amino acids of some marine phytoplankton species.J. mar. biol. Ass. U.K. 47, 543–554.

    Google Scholar 

  • Chipperfield, P. N. J., 1951. The breeding ofCrepidula fornicata (L.) in the river Blackwater, Essex.J. mar. biol. Ass. U.K. 30, 49–71.

    Google Scholar 

  • Chuecas, L. &Riley, J. P., 1969. Component fatty acids of the total lipids of some marine phytoplankton.J. mar. biol. Ass. U.K. 49, 97–116.

    Google Scholar 

  • Collyer, D. M. &Fogg, G. E., 1955. Studies on fat accumulation by algae.J. exp. Bot. 6, 256–275.

    Google Scholar 

  • Corner, E. D. S., 1961. On the nutrition and metabolism of zooplankton. I. Preliminary observations on the feeding of the marine copepod,Calanus helgolandicus (Claus).J. mar. biol. Ass. U.K. 41, 5–16.

    Google Scholar 

  • Cowey, C. B. &Corner, E. D. S., 1962. The amino-acid composition ofCalanus finmarchicus (Claus) in relation to that of its food.Rapp. P.-v. Réun. Cons. perm. int. Explor. Mer 153, 124–128.

    Google Scholar 

  • —— —— 1963. On the nutrition and metabolism of zooplankton. II. The relationship between the marine copepodCalanus helgolandicus and particulate material in Plymouth sea water, in terms of amino-acid composition.J. mar. biol. Ass. U.K. 43, 495–511.

    Google Scholar 

  • —— —— 1966. The amino-acid composition of certain unicellular algae and of the faecal pellets produced byCalanus finmarchicus when feeding on them.In: Some contemporary studies in marine science. Ed. by H. Barnes. Allen & Unwin, London, 225–231.

    Google Scholar 

  • Cushing, D. H., 1959. On the nature of production in the sea.Fishery Invest., Lond. (Ser. 2) 22, 1–40.

    Google Scholar 

  • Davis, H. C., 1953. On food and feeding of larvae of the American oyster,C. virginica.Biol. Bull. mar. biol. Lab., Woods Hole 104, 334–350.

    Google Scholar 

  • —— &Chanley, P. E., 1956. Effects of some dissolved substances on bivalve larvae.Proc. natn. Shellfish. Ass. 46, 59–74.

    Google Scholar 

  • —— &Guillard, R. R., 1958. Relative value of ten genera of micro-organisms as food for oyster and clam larvae.Fishery Bull. Fish Wildl. Serv. U.S. 58, 293–304.

    Google Scholar 

  • Droop, M. R., 1966. The role of algae in the nutrition ofHeteramoeba clara Droop, with notes onOxyrrhis marina Dujardin andPhilodina roseola Ehrenberg.In: Some contemporary studies in marine science. Ed. by H. Barnes. Allen & Unwin, London, 269–282.

    Google Scholar 

  • Fogg, G. E., 1965. Algal cultures and phytoplankton ecology. Athlone press, London, 126 pp.

    Google Scholar 

  • Fretter, V., 1967. The prosobranch veliger.Proc. malac. Soc. Lond. 37, 357–366.

    Google Scholar 

  • —— &Montgomery, M. C., 1968. The treatment of food by prosobranch veligers.J. mar. biol. Ass. U.K. 48, 499–520.

    Google Scholar 

  • Fritsch, R. H., 1953. Die Lebensdauer vonDaphnia spec. bei verschiedener Ernährung, besonders bei Zugabe von Pantothensäure.Z. wiss. Zool. 157, 35–56.

    Google Scholar 

  • Guillard, R. R. L., 1959. Further evidence of the destruction of bivalve larvae by bacteria.Biol. Bull. mar. biol. Lab., Woods Hole 117, 258–266.

    Google Scholar 

  • Imai, T. &Hatanaka, M., 1949. On the artificial propagation of the Japanese common oyster,Ostrea gigas Thun. by non-coloured naked flagellates.Bull. Inst. agric. Res. Tohoku Univ. 1, 33–46.

    Google Scholar 

  • Korringa, P., 1951. Difficulties encountered in tank-breeding of oysters(Ostrea edulis).Rapp. P. v. Réun. Cons. perm. int. Explor. Mer 128, 35–38.

    Google Scholar 

  • Kriss, A. E., 1963. Marine microbiology. Transl. from the Russian. Oliver & Boyd, Edinburgh, 536 pp.

    Google Scholar 

  • Lebour, M. V., 1931. The larval stages ofNassarius reticulatus andN. incrassatus.J. mar. biol. Ass. U.K. 17, 797–816.

    Google Scholar 

  • Lefèvre, M., 1942. L'utilisation des algues d'eau douce par les cladocères.Bull. biol. Fr. Belg. 76, 250–276.

    Google Scholar 

  • Martindale, W., 1967. Penicillins and other antibiotics.In: Todd, R. G.: Extra Pharmacopoeia. The Pharmaceutical Press, London, 1804 pp.

    Google Scholar 

  • Parsons, T. R., Stephens, K. &Strickland, J. D. H., 1961. On the chemical composition of eleven species of marine phytoplankters.J. Fish. Res. Bd Can. 18, 1001–1016.

    Google Scholar 

  • Paulson, T. C. &Scheltema, R. S., 1968. Selective feeding on algal cells by the veliger larvae ofNassarius obsoletus (Gastropoda, Prosobranchia).Biol. Bull. mar. biol. Lab., Woods Hole 134, 481–489.

    Google Scholar 

  • Provasoli, L., Shivaiski, K. &Lance, J. R., 1959. Nutritional idiosyncrasies ofArtemia andTigriopus in monoxenic culture.Ann. N. Y. Acad. Sci. 77, 250–261.

    Google Scholar 

  • Reeve, M. R., 1963. The filter-feeding ofArtemia, I, II, III.J. exp. Biol. 40, 195–221.

    Google Scholar 

  • Ricketts, T. R., 1966. On the chemical composition of some unicellular algae.Phytochemistry 5, 67–76.

    Google Scholar 

  • Scheltema, R. S., 1962. Pelagic larvae of New England intertidal gastropods.. I.Nassarius obsoletus Say andNassarius vibex Say.Trans. Am. microsc. Soc. 81, 1–11.

    Google Scholar 

  • —— 1967. The relationship of temperature to the larval development ofNassarius obsoletus (Gastropoda).Biol. Bull. mar. biol. Lab., Woods Hole 132, 253–265.

    Google Scholar 

  • Shewan, J. M., 1963. The differentiation of certain genera of gram negative bacteria frequently encountered in marine environments.In: Symposium on marine microbiology. Ed. by C. H. Oppenheimer. C. C. Thomas, Springfield, Ill., 499–521.

    Google Scholar 

  • Walne, P. R., 1956a. Bacteria in experiments on rearing oyster larvae.Nature, Lond. 178, 91.

    Google Scholar 

  • —— 1956b. Experimental rearing of larvae ofOstrea edulis L. in the laboratory.Fishery Invest., Lond. (Ser. 2) 20 (9), 1–23.

    Google Scholar 

  • —— 1958. The importance of bacteria in laboratory experiments on rearing the larvae ofOstrea edulis (L.)J. mar. biol. Ass. U.K. 37, 415–425.

    Google Scholar 

  • —— 1963. Observations on the food value of seven species of algae to the larvae ofOstrea edulis. 1. Feeding experiments.J. mar. biol. Ass. U.K. 43, 767–784.

    Google Scholar 

  • —— 1965. Observations on the influence of food supply and temperature on the feeding and growth of the larvae ofOstrea edulis L.Fishery Invest., Lond. (Ser. 2) 24 (1), 1–45.

    Google Scholar 

  • Wilson, D. P., 1968. Some aspects of the development of eggs and larvae ofSabellaria alveolata (L.).J. mar. biol. Ass. U.K. 48, 367–386.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pilkington, M.C., Fretter, V. Some factors affecting the growth of prosobranch veligers. Helgolander Wiss. Meeresunters 20, 576–593 (1970). https://doi.org/10.1007/BF01609930

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01609930

Keywords