Skip to main content
  • Published:

Salinity dependence, uptake kinetics, and specificity of amino-acid absorption across the body surface of the oligochaete annelidEnchytraeus albidus

Abstract

Enchytraeus albidus is able to absorb dissolved14C-labeled neutral amino acids (glycine, L-alanine, L-valine,α-aminoisobutyric acid) and an amino-acid mixture from ambient water across the body surface against considerable concentration gradients. Saturation kinetics and susceptibility of glycine uptake to competitive inhibition by alanine suggest mediated transport. Absorption of neutral amino acids is an active process. Exchange diffusion of preloadedα-aminoisobutyric acid against external glycine orα-aminoisobutyric acid could not be detected. Results on inhibition of glycine uptake by a variety of low-molecular-weight substances indicate that glycine absorption is highly specific for neutral amino acids and somewhat less for basic amino acids; it is unspecific for non-α-amino acids, acidic amino acids, carbohydrates, and organic acids. Rates of transintegumentary net influx of glycine are nearly identical to14C-glycine influx, suggesting that only small amounts of amino acids are released, as compared with the capacity for uptake. Thus,14C-amino-acid influx data are used for characterization of the uptake system. Glycine uptake is positively correlated to external salinity. In fresh water, absorption is nearly zero; between 10 and 20 ‰ S, uptake increases markedly reaching maximum values at 30 ‰ S; these remain almost constant at 40 ‰ S. Transport constants and maximum uptake rates increase with rising salinities. Since absorption of glycine and L-valine is susceptible to sodium depletion, similar mechanisms presumably underly salinity-dependent uptake of amino acids and sodium-dependent solute transport. Oxygen consumption is not significantly modified by different external salinities. Estimates of nutritional profit gained from absorption of amino acids vary between 4 and 15 % of metabolic rate for glycine absorption and between 10 and 39 % for uptake of an amino-acid mixture, according to external concentrations (10 and 50 µM) and salinities (20 and 30 ‰ S).

Literature cited

  • Ahearn, G. A. & Gomme, J., 1975. Transport of exogenous D-glucose by the integument of a polychaete worm (Nereis diversicolor Müller). J. exp. Biol.62 243–264.

    Google Scholar 

  • —— & Townsley, S. J., 1975. Integumentary amino acid transport and metabolism in the apodous sea cucumber,Chiridota rigida. J. exp. Biol.62 733–752.

    Google Scholar 

  • Anderson, J. W., 1975. The uptake and incorporation of glycine by the gills ofRangia cuneata (Mollusca: Bivalvia) in response to variations in salinity and sodium. In: Physiological ecology of estuarine organisms. Ed. by J. Vernberg. Univ. South Calif. Press, Columbia, 239–258.

    Google Scholar 

  • Bamford, D. R. & Gingles, R., 1974. Absorption of sugars in the gill of the Japanese oyster,Crassostrea gigas. Comp. Biochem. Physiol.49A 637–646.

    Google Scholar 

  • —— & Campbell, E., 1976. The effect of environmental factors on the absorption of L-phenylalanine by the gill ofMytilus edulis. Comp. Biochem. Physiol.53A 295–299.

    Google Scholar 

  • Bohling, H., 1970. Untersuchungen über freie gelöste Aminosäuren im Meerwasser. Mar. Biol.6 213–225.

    Google Scholar 

  • —— 1972. Gelöste Aminosäuren im Oberflächenwasser der Nordsee bei Helgoland: Konzentrationsveränderungen im Sommer 1970. Mar. Biol.16 281–289.

    Google Scholar 

  • Bulnheim, H.-P., 1974. Respiratory metabolism ofIdotea balthica (Crustacea, Isopoda) in relation to environmental variables, acclimation processes and moulting. Helgoländer wiss. Meeresunters.26 461–480.

    Google Scholar 

  • Christensen, H. N., 1975. Biological transport. Benjamin, Reading, Mass., 514 pp.

    Google Scholar 

  • Clark, M. E., Jackson, G. A. & North, W. J., 1972. Dissolved free amino acids in southern California coastal waters. Limnol. Oceanogr.17 749–758.

    Google Scholar 

  • Florey, E., 1970. Lehrbuch der Tierphysiologie. Thieme, Stuttgart. 574 pp.

    Google Scholar 

  • Florkin, M., 1969. Nitrogen metabolism. In: Chemical zoology. Ed. by M. Florkin & B. T. Scheer. Acad. Press, New York,4, 147–162.

    Google Scholar 

  • Hoar, W. S. & Randall, D. J., 1969. Fish physiology. Acad. Press, London,3 1–485.

    Google Scholar 

  • Jørgensen, C. B., 1976. August Pütter, August Krogh, and modern ideas on the use of dissolved organic matter in aquatic environments. Biol. Rev.51 291–328.

    Google Scholar 

  • Nielsen, C. O., 1961. Respiratory metabolism of some populations of enchytraeid worms and freeliving nematodes. Oikos12 17–35.

    Google Scholar 

  • North, B. B., 1975. Primary amines in California coastal waters: utilization by phytoplankton. Limnol. Oceanogr.20 20–27.

    Google Scholar 

  • Pappas, P. W. & Read, C. P., 1975. Membrane transport in helminth parasites: A review. Exp. Parasitol.37 469–530.

    Google Scholar 

  • Saier, M. H., Jr. & Stiles, C. D., 1975. Molecular dynamics in biological membranes. Springer, New York, 129 pp.

    Google Scholar 

  • Schlichter, D., 1975. The importance of dissolved organic compounds in sea water for the nutrition ofAnemonia sulcata Pennant (Coelenterata). In: Ninth European marine biology symposium. Ed. by H. Barnes. Aberdeen Univ. Press, Aberdeen, 395–405.

    Google Scholar 

  • Schöne, C., 1971. Über den Einfluß von Nahrung und Substratsalinität auf Verhalten, Fortpflanzung und Wasserhaushalt vonEnchytraeus albidus Henle (Oligochaeta). Oecologia6 254–266.

    Google Scholar 

  • Schultz, S. G. & Curran, P. F., 1970. Coupled transport of sodium and organic solutes. Physiol. Rev.50 637–718.

    Google Scholar 

  • —— Frizzell, R. A. & Nellans, H. N., 1974. Ion transport by mammalian small intestine. Rev. Physiol.36 51–91.

    Google Scholar 

  • Sepers, A. B. J., 1977. The utilization of dissolved organic compounds in aquatic environments. Hydrobiologia52 39–54.

    Google Scholar 

  • Shick, J. M., 1973. Effects of salinity and starvation on the uptake and utilization of dissolved glycine byAurelia aurita polyps. Biol. Bull. mar. biol. Lab., Woods Hole144 172–179.

    Google Scholar 

  • —— 1975. Uptake and utilization of dissolved glycine byAurelia aurita scyphistomae: temperature effects on the uptake process; nutritional role of dissolved amino acids. Biol. Bull. mar. biol. Lab., Woods Hole148 117–140.

    Google Scholar 

  • Siebers, D., 1976. Absorption of neutral and basic amino acids across the body surface of two annelid species. Helgoländer wiss. Meeresunters.28 456–466.

    Google Scholar 

  • —— Lucu, C., Sperling, K.-R. & Eberlein, K., 1972. Kinetics of osmoregulation in the crabCarcinus maenas. Mar. Biol.17 291–303.

    Google Scholar 

  • —— & Bulnheim, H.-P., 1976. Salzgehaltsabhängigkeit der Aufnahme gelöster Aminosäuren bei dem OligochaetenEnchytraeus albidus. Verh. dt. zool. Ges.69 212.

    Google Scholar 

  • Sorokin, Yu. I. & Wyshkwarzev, D. I., 1973. Feeding on dissolved organic matter by some marine animals. Aquaculture2 141–148.

    Google Scholar 

  • Southward, A. J. & Southward, E. C., 1970. Observations on the role of dissolved organic compounds in the nutrition of benthic invertebrates. Experiments on three species of Pogonophora. Sarsia45 69–96.

    Google Scholar 

  • —— —— 1972. Observations on the role of dissolved organic compounds in the nutrition of benthic invertebrates. III. Uptake in relation to organic content of the habitat. Sarsia50 29–46.

    Google Scholar 

  • Stephens, G. C., 1963. Uptake of organic material by aquatic invertebrates. II. Accumulation of amino acids by the bamboo worms,Clymenella torquata. Comp. Biochem. Physiol.10 191–202.

    Google Scholar 

  • —— 1964. Uptake of organic material by aquatic invertebrates. III. Uptake of glycine by brackish water annelids. Biol. Bull. mar. biol. Lab., Woods Hole126 150–162.

    Google Scholar 

  • —— 1972. Amino acid accumulation and assimilation in marine organisms. In: Nitrogen metabolism and the environment. Ed. by J. W. Campbell & L. Goldstein. Acad. Press, London, 318 pp.

    Google Scholar 

  • —— 1975. Uptake of naturally occurring primary amines by marine annelids. Biol. Bull. mar. biol. Lab., Woods Hole149 397–407.

    Google Scholar 

  • —— & Virkar, R. A., 1966. Uptake of organic material by aquatic invertebrates. IV. The influence of salinity on the uptake of amino acids by the brittle star,Ophiactis arenosa. Biol. Bull. mar. biol. Lab., Woods Hole131 172–185.

    Google Scholar 

  • Taylor, A. G., 1969. The direct uptake of amino acids and other small molecules from sea water byNereis virens Sars. Comp. Biochem. Physiol.29 243–250.

    Google Scholar 

  • Troll, W. & Cannon, R. K., 1953. A modified photometric ninhydrin method for the analysis of amino acids and imino acids. J. biol. Chem.200 803.

    Google Scholar 

  • Wiseman, G., 1974. Absorption of protein digestion products. In: Biomembranes. Ed. by L. A. Manson. Plenum Press, New York,4, 363–481.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siebers, D., Bulnheim, H.P. Salinity dependence, uptake kinetics, and specificity of amino-acid absorption across the body surface of the oligochaete annelidEnchytraeus albidus . Helgolander Wiss. Meeresunters 29, 473–492 (1977). https://doi.org/10.1007/BF01609985

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01609985

Keywords