Skip to main content

Non-genetic adaptation to temperature and salinity

Nichtgenetische Adaptation an Temperatur und Salzgehalt

Kurzfassung

Das Phänomen der Adaptation wird aus der Perspektive der Ökologie interpretiert und der Begriff „Adaptation“ definiert als Neueinstellung lebender Systeme im Anschluß an Veränderungen in den Intensitätsmustern von Umweltfaktoren, welche letztlich zu einer relativen Erhöhung der Überlebens-, Vermehrungs- oder Konkurrenzkapazität führt und somit objektiv meßbare „potentielle Vorteile“ im existenzökologischen Sinne beinhaltet. Nichtgenetische Adaptationen (Synonyma: Akklimatisation, Akklimatisierung) vermögen erhebliche Veränderungen in der quantitativen Biologie des Stoffwechsels herbeizuführen. Im zeitlichen Ablauf des Akklimatisationsgeschehens werden drei Phasen unterschieden: Simultanreaktion, Stabilisierung und neuer stationärer Zustand. Eine Simultanreaktion auf plötzliche Umweltveränderungen spielt sich ab in Sekunden, Minuten oder Stunden. Der Vorgang der Stabilisierung dauert (bei marinen Wirbellosen und Fischen) gewöhnlich Tage oder Wochen, wobei oftmals mehr als die Hälfte des „Endanpassungsvolumens“ im allerersten Abschnitt der Stabilisierungsphase bewältigt wird. Die mit dem neuen stationären Zustand verbundenen quantitativen Unterschiede gegenüber der Ausgangssituation werden insbesondere am Beispiel der oberen und unteren Letalgrenzen und der Stoffwechselintensität erläutert. Nichtgenetische Adaptationen können sich aber auch auf andere Funktionen erstrecken, wie etwa Bewegungsaktivität, Vermehrung oder Verhalten und auf strukturelle Bereiche (Körperdimensionen, Organ- und Zellarchitektur, Zellzahl pro Organ etc.). Eine eingehende Beurteilung der quantitativen Aspekte nichtgenetischer Adaptationen erfordert eine Differenzierung zwischen Gesamtvolumen (amount; percentage perfection), Stabilität und Rate. Das Gesamtvolumen erreicht häufig Maximalwerte während der frühen Ontogenie und nimmt danach mit zunehmendem Alter ab. Ähnliches gilt für die Stabilität: Während der frühen Ontogenie erworbene Akklimatisationen erweisen sich häufig als besonders stabil und können im Verlauf des späteren Individualdaseins sogar partiell irreversibel sein. Die Akklimatisationsrate steigt gewöhnlich mit zunehmender Stoffwechselintensität. Vermutlich vollzieht sich eine nichtgenetische Adaptation gegenüber einem Faktor, etwa Salzgehalt, mit unterschiedlicher Geschwindigkeit und unterschiedlichem Nutzeffekt bei verschiedenen Intensitätsmustern eines gleichzeitig einwirkenden zweiten oder dritten Faktors (Temperatur, Sauerstoffgehalt).

Discussion and summary

1. Our present information on non-genetic adaptation of intact aquatic organisms to temperature and salinity does not yet provide a sufficient platform for a detailed analysis. Only a few of the publications available deal with non-genetic adaptation exclusively; many are primarily devoted to other topics. The mechanisms of most types of adjustments appear to be rather complex and are not yet well understood. The net result of non-genetic adaptation is compensation for adversive aspects in a changing environment.

2. Non-genetic adaptation may involve quantitative changes in lethal limits, activity, metabolism, reproduction and other functions as well as in body dimensions, architecture of organs and cells, cell number per organ and in the quantity and activity of enzymes. It practically involves all levels of organismic function and structure. Non-genetic adaptation is not the result of a single process but represents a syndrome. The capacity for non-genetic adaptation depends on the genetic background of the organism involved; it may be different in different ontogenetic stages, such as egg, larva and adult, and may bear relations to metamorphosis and reproduction. There appears to be some evidence that non-genetic adaptations which have been acquired during the most sensitive phase of an individual's life cycle may be transferred to the next generation as non-genetic transmission (e. g.Prosser 1958).

3. There is urgent need for carefully conducted long-term experiments. Much of our present knowledge on non-genetic adaptation has been obtained from organisms kept under inadequate conditions; numerous experiments seem to have been conducted on sick or dying specimens. Even the small amount of information available at this time has therefore to be evaluated with some critical skepticism. Poor conditions and poor health are dangerous prerequisities for the analysis of such a complex and subtle process as is non-genetic adaptation.

4. Assessment of quantitative aspects of non-genetic adaptation requires distinction between its amount, stability and velocity. To illustrate this point, let us consider a euryplastic organism with a considerable capacity for non-genetic adaptation. In such an organism the amount of non-genetic adaptation tends to reach the highest values during early ontogeny and thereafter to decrease gradually with increasing age of the individual. The maximum amount of a given acclimation may only be attainable in individuals born and raised in the test environment. The amount may be expressed in “percentage perfection”. The perfection of a nongenetic adaptation is 100 per cent in the rare case of an “ideal” or “perfect” acclimation, i. e. if the steady-state performance following a significant change in temperature or salinity goes back to its original level after stabilization. In most cases the percentage perfection is much smaller. Thus in the crabPachigrapsus crassipes perfection of acclimation to a seasonal range of about 10°C (Southern California) was calculated byRoberts (1957) from rate-temperature curves for individuals acclimated to experimental temperatures to be about 30 per cent. The degree of stability of a non-genetic adaptation, too, seems to decrease with increasing age: adjustments during early ontogenetic development tend to be more stable than those performed during later periods of ontogeny and may even be — at least in part — irreversible throughout the rest of the life of the individual concerned. Examples areCrangon crangon (Broekema 1941),Gammarus duebeni (Kinne 1953, 1958b),Lebistes reticulatus (Gibson 1954,Fry 1957,Tsukuda &Katayama 1957,Tsukuda 1960),Cyprinodon macularius (Kinne 1962). Reversible acclimations need reinforcement if they are to be maintained. The velocity of non-genetic adaptation tends to increase with increasing rates of metabolism. In the fishCyprinodon macularius, for example, speed of acclimation increases with temperature and seems to be proportional to growth rate: fast-growing fish adapt faster than slow-growing ones (Kinne 1960, 1962).

5. Most authors have considered non-genetic adaptations to a single environmental factor, namely either to temperature or salinity. Organisms, however, react to their total environment rather than to single entities. It is therefore of particular importance to study the combined effects of two or more components of the environment. Very little is presently known about the combined effects of temperature and salinity on the process of non-genetic adaptation (e. g.Dehnel 1960,Todd &Dehnel 1960,Matutani 1962,Alderdice 1963,Kinne 1963b, 1964a, b).McLeese (1956) analyzed the combined effects of temperature, salinity and oxygen on the survival rates of American lobsters (Fig. 8) (see alsoAlderdice 1963), and at the present Symposium,Roberts (1964) reported that the perfection of thermal acclimation of respiration in sunfishLepomis gibbosus becomes a function of day length above temperature of about 10°C.

6. There appears to be some evidence that acclimation to one factor, say salinity, proceeds at different rates and at different efficiencies under different levels of other simultaneous acclimations, for example, to temperature or oxygen (Kinne 1964a, b). Furthermore, inharmonious interrelations between one functional or structural adaptate relative to another may be a fundamental way of limiting the total resulting amount of non-genetic adaptation. The maximum amount of acclimation to a given temperature is presumably only attainable at normal or near optimum salinities, and, conversely, maximum acclimation to salinity is presumably only possible under corresponding temperature conditions.

7. Very little is known about the process of de-adaptation. Does the process of de-acclimation display a similar or a different time course than the respective acclimation? Can de-acclimation from one factor, such as temperature, be initiated or hastened by applying a new stress, such as extreme salinity? De-acclimation may involve active changes and not just a cessation of a given non-genetic adaptation. Thus upon return from high altitude to sea level, erythropoiesis not only stops, but erythrocyte destruction is accelerated (Merino 1950). Apparently, acclimation and de-acclimation are two opposed processes in competition, reaching equilibrium only under constant environmental conditions.

8. The information presented in this paper pertains to reactions of intact, whole individuals. Can we expect cells, tissues or organs removed from multi-cellular animals to preserve and display the full amount of a given non-genetic adaptation acquired in the intact organism? Presumably not, if a substantial part of that acclimation is based on adjustments in organismic integration. But even in other cases, removed cells or organs may often tend to lose part or all of the acclimation acquired due to damages caused by operation procedures. Another important question is whether or not there exists a relationship between the amount of acclimation retained in isolated cells and (a) the level of organismic organization of the test organism (e. g. in the series plant, protozoan, crustacean, fish), or (b) the degree of disturbance caused by the removal of these cells.

9. The amount of cellular acclimation to a given environmental situation may very well be different in different tissues or organs. Thus non-genetic adaptation to changes in salinity may express itself in cells of epidermis, gill or gut rather than in muscle or nerve cells. InCordylophora caspia, for example, acclimation to different salinities results in considerable adjustments in the cells of tentacles, hydranth body and “neck”, while those of the hydrocaulus and stolons remain practically unaffected (Kinne 1958a), and in male rats, cold acclimation causes a remarkable increase in the amount of brown fat, while other tissues do not seem to show such intensive modifications (Smith 1964).

Literature cited

  1. Adolph, E. F., 1956. General and specific characteristics of physiological adaptations.Am. J. Physiol. 184, 18–28.

    Google Scholar 

  2. Alderdice, D. F., 1963. Some effects of simultaneous variation in salinity, temperature and dissolved oxygen on the resistance of young Coho salmon to a toxic substance.J. Fish. Res. Bd. Canada 20, 525–550.

    Google Scholar 

  3. Allee, W. C., 1931. Animal aggregations. Univ. Chicago Press, Chicago, 431 pp.

    Google Scholar 

  4. Anders, F., Vester, F., Klinke, K. &Schumacher, H., 1962. Genetische und biochemische Untersuchungen über die Bedeutung der freien Aminosäuren für die Tumorgenese bei Artbzw. Gattungsbastarden lebendgebärender Zahnkarpfen (Poeciliidae).Biol. Zbl. 81, 45–65.

    Google Scholar 

  5. Anderson, J. D. &Prosser, C. L., 1953. Osmoregulating capacity in populations occurring in different salinities.Biol. Bull. mar. biol. Lab., Woods Hole 105, 369.

    Google Scholar 

  6. Barnes, H., 1959. Apparatus and methods of oceanography. Part one: chemical. Intersci. Publ., Inc., New York, 341 pp.

    Google Scholar 

  7. —— &Barnes, M., 1958. Note on the opening response ofBalanus balanoides (L.) in relation to salinity and certain inorganic ions.Veröff. Inst. Meeresforsch. Bremerhaven 5, 160–164.

    Google Scholar 

  8. Behre, E. H., 1918. An experimental study of acclimation to temperature inPlanaria dorotocephala.Biol. Bull. mar. biol. Lab., Woods Hole 35, 277–317.

    Google Scholar 

  9. Bělehrádek, J., 1928. Le ralentissement des réactions biologiques par le froid est causé par une augmentation de la viscosité du protoplasma.Protoplasma 3, 317–326.

    Google Scholar 

  10. -- 1935. Temperature and living matter. Borntraeger, Berl. Protoplasma-Monogr.8, 277 pp.

  11. Beliaev, G. M. &Tschugunova, M. N., 1952. Die physiologischen Unterschiede zwischen den Mytili(Mytilus) der Barentssee und der Ostsee. (In Russian) Vortr. Akad. Wiss. UdSSR.Ökol 85, 233–236.

    Google Scholar 

  12. Berger, E., 1929. Unterschiedliche Wirkungen gleicher Ionen und Ionengemische auf verschiedene Tierarten. Ein Beitrag zur Lehre vom Ionenantagonismus. Inaug.-Diss., Univ. Kiel, 39 pp.

  13. Borei, H., 1936. Über die Einwirkung des Salzgehaltes auf den O2-Verbrauch des Echinodermeneies.Z. Morph. Ökol. Tiere 30, 97–98.

    Google Scholar 

  14. Bouxin, H., 1931. Influence des variations rapides de la salinité sur la consommation d'oxygène chezMytilus edulis var.galloprovincialis (Lmk.).Bull. Inst. océanogr. Monaco No. 569, 1–11.

  15. Brett, J. R., 1946. Rate of gain of heat-tolerance in goldfish(Carassius auratus). Univ. Toronto Stud., Biol. Ser. No. 52, 9–28.

  16. —— 1952. Temperature tolerance in young Pacific salmon, genusOncorhynchus.J. Fish. Res. Bd. Canada 9, 265–323.

    Google Scholar 

  17. —— 1956. Some principles in the thermal requirements of fishes.Quart. Rev. Biol. 31, 75–87.

    Google Scholar 

  18. Broekema, M. M. M., 1941. Seasonal movements and the osmotic behaviour of the shrimp,Crangon crangon L.Archs. néerl. Zool. 6, 1–100.

    Google Scholar 

  19. Brooks, J. L., 1946. Cyclomorphosis inDaphnia. I. An analysis ofD. retrocurva andD. galeata.Ecol. Monogr. 16, 409–447.

    Google Scholar 

  20. —— 1947. Turbulence as an environmental determinant of relative growth inDaphnia.Proc. nat. Acad. Sci., Wash. 33, 141–148.

    Google Scholar 

  21. —— 1957. The species problem in freshwater animals.In: The species problem; edited byE. Mayr, Am. Ass. Advanc. Sci., Wash., D. C., 81–123.

    Google Scholar 

  22. Brown, F. A., Jr., 1934. The chemical nature of the pigments and the transformations responsible for color changes inPalaemonetes.Biol. Bull. mar. biol. Lab., Woods Hole 67, 365–380.

    Google Scholar 

  23. Bullock, T. H., 1955. Compensation for temperature in the metabolism and activity of poikilotherms.Biol. Rev. 30, 311–342.

    Google Scholar 

  24. Christophersen, J. &Precht, H., 1952a. Untersuchungen zum Problem der Hitzeresistenz. I. Versuche an Karauschen (Carassius vulgaris Nils.).Biol. Zbl. 71, 313–326.

    Google Scholar 

  25. —— 1952b. Untersuchungen zum Problem der Hitzeresistenz. II. Versuche an Hefezellen.Biol. Zbl. 71, 585–601.

    Google Scholar 

  26. —— 1953. Die Bedeutung des Wassergehaltes der Zelle für Temperaturanpassungen.Biol. Zbl. 72, 104–119.

    Google Scholar 

  27. —— 1956. Über die Kälteresistenz von Hefezellen.Biol. Zbl. 75, 612–624.

    Google Scholar 

  28. Croghan, P. C., 1961. Competition and mechanisms of osmotic adaptation.Symp. Soc. exp. Biol. 15, 156–167.

    Google Scholar 

  29. Dehnel, P. A., 1960. Effect of temperature and salinity on the oxygen consumption of two intertidal crabs.Biol. Bull. mar. biol. Lab., Woods Hole 118, 215–249.

    Google Scholar 

  30. Doudoroff, P., 1942. The resistance and acclimation of marine fishes to temperature changes. I. Experiments withGirella nigricans (Ayres).Biol. Bull. mar. biol. Lab., Woods Hole 83, 219–244.

    Google Scholar 

  31. —— 1945. The resistance and acclimation of marine fishes to temperature changes. II. Experiments withFundulus andAtherinops.Biol. Bull. mar. biol. Lab., Woods Hole 88, 194–206.

    Google Scholar 

  32. Duchâteau, G. &Florkin, M., 1955. Influence de la température sur l'état stationnaire du pool des acides aminés non protéiques des muscles d'Eriocheir sinensis Milne-Edwards.Archs int. Physiol. Biochim 63, 213–221.

    Google Scholar 

  33. Duval, M., 1925. Récherches physico-chimiques et physiologiques sur le milieu intérieur des animaux aquatiques. Modifications sous l'influence du milieu extérieur.Annls Inst. océanogr. Monaco 2, 233–403.

    Google Scholar 

  34. Flemister, L. J. &Flemister, S. C., 1951. Chloride ion regulation and oxygen consumption in the crabOcypode albicans (Bosq).Biol. Bull. mar. biol. Lab., Woods Hole 101, 259–273.

    Google Scholar 

  35. Florkin, M., 1960. Ecology and metabolism.In: The physiology of Crustacea; edited byT. H. Waterman, Acad. Pr., New York and London1, 395–410.

    Google Scholar 

  36. Fontaine, M. &Raffy, A., 1935. Sur la consommation d'oxygène de la lamproie marine (Petromyzon marinus L.). Influence de la salinité.Ass. fr. Avanc. Sci. 59, 330–333.

    Google Scholar 

  37. Ford, P., 1958. Studies on the development of the kidney of the Pacific pink salmon (Oncorhynchus gorbuscha Walbaum). II. Variation in glomerular count of the kidney of the Pacific pink salmon.Can. J. Zool. 36, 45–48.

    Google Scholar 

  38. Friedrich, H., 1937. Einige Beobachtungen über das Verhalten derAlderia modesta Lov. im Brackwasser.Biol. Zbl. 57, 101–104.

    Google Scholar 

  39. Fry, F. E. J., 1947. Effects of the environment on animal activity.Univ. Toronto Stud., Biol. Ser., No. 55, 1–62.

  40. —— 1957. The lethal temperature as a tool in taxonomy.Annls biol., Copenh. 33, 205–219.

    Google Scholar 

  41. —— &Clawson, G. H., 1942. Lethal limits of temperature for young goldfish.Rev. canad. Biol. 1, 50–56.

    Google Scholar 

  42. --Hart, J. S. &Walker, K. F., 1946. Lethal temperature relations for a sample of young speckled trout,Salvelinus fontinalis. Univ. Toronto Stud., Biol. Ser., No. 54, 9–35.

  43. Fulton, C., 1960. Culture of a colonial hydroid under controlled conditions.Science 132, 473–474.

    Google Scholar 

  44. —— 1962. Environmental factors influencing the growth ofCordylophora.J. Exp. Zool. 151, 61–78.

    Google Scholar 

  45. Gibson, M. B., 1954. Upper lethal temperature relations of the guppy,Lebistes reticulatus.Can. J. Zool. 32, 393.

    Google Scholar 

  46. Gilchrist, B. M., 1956. The oxygen consumption ofArtemia salina (L.) in different salinities.Hydrobiologia 8, 54–65.

    Google Scholar 

  47. —— 1958. The oxygen consumption ofArtemia salina (L.).Hydrobiologia 12, 27–37.

    Google Scholar 

  48. Grainger, J. N. R., 1956. Effects of changes of temperature on the respiration of certain Crustacea.Nature, Lond. 178, 930–931.

    Google Scholar 

  49. —— 1958. First stages in the adaptation of poikilotherms to temperature change.In: Physiological adaptation; edited byC. L. Prosser, Am. Physiol. Soc., Wash., D. C., 79–91.

    Google Scholar 

  50. Gross, W. J., 1955. Aspects of osmotic regulation in crabs showing the terrestrial habit.Am. Nat. 89, 205–222.

    Google Scholar 

  51. —— 1957a. An analysis of response to osmotic stress in selected decapod Crustacea.Biol. Bull. mar. biol. Lab., Woods Hole 112, 43–62.

    Google Scholar 

  52. —— 1957b. A behavioral mechanism for osmotic regulation in a semiterrestrial crab.Biol. Bull. mar. biol. Lab., Woods Hole 113, 268–274.

    Google Scholar 

  53. —— 1963. Acclimation to hypersaline water in a crab.Comp. Biochem. Physiol. 9, 181–188.

    Google Scholar 

  54. Gueylard, F., 1925. De l'adaptation aux changements de salinité. Recherches biologiques et physicochimiques sur l'epinoche (Gasterosteus leiurus Cur. &Val.).Archs Phys. biol. 3, 79–187.

    Google Scholar 

  55. Harder, W., 1957. Verhalten von Organismen gegenüber Sprungschichten.Annls biol., Copenb. 33, 227–232.

    Google Scholar 

  56. Hart, J. S., 1947. Lethal temperature relations of certain fish of the Toronto region.Trans. roy. Soc. Can. 41, 57–71.

    Google Scholar 

  57. Hathaway, E. S., 1927. Quantitative study of the changes produced by acclimation on the tolerance of high temperatures by fishes and amphibians.Bull. Bur. Fish., Wash. 43, 169–192.

    Google Scholar 

  58. Henschel, J., 1936. Wasserhaushalt und Osmoregulation von Scholle und Flunder.Wiss. Meeresunters. Abt. Kiel 22, 89–121.

    Google Scholar 

  59. Herrmann, F., 1931. Über den Wasserhaushalt des Flußkrebses (Potamobius astacus Leach).Z. vergl. Physiol. 14, 479–524.

    Google Scholar 

  60. Herter, K., 1927. Reizphysiologische Untersuchungen an der Karpfenlaus (Argulus foliaceus L.).Z. vergl. Physiol. 5, 283–370.

    Google Scholar 

  61. Hrbáček, J., 1959. Circulation of water as a main factor influencing the development of helmets inDaphnia cucullata Sars.Hydrobiologia 13, 170–185.

    Google Scholar 

  62. Kinne, O., 1952. Zur Biologie und Physiologie vonGammarus duebeni Lillj., V: Untersuchungen über Blutkonzentration, Herzfrequenz und Atmung.Kieler Meeresforsch. 9, 134–150.

    Google Scholar 

  63. —— 1953. Zur Biologie und Physiologie vonGammarus duebeni Lillj., I.Z. wiss. Zool. 157, 427–491.

    Google Scholar 

  64. —— 1956. Über den Einfluß des Salzgehaltes und der Temperatur auf Wachstum, Form und Vermehrung bei dem HydroidpolypenCordylophora caspia (Pallas), Athecata, Clavidae.Zool. Jb. (Physiol.) 66, 565–638.

    Google Scholar 

  65. —— 1958a. Über die Reaktion erbgleichen Coelenteratengewebes auf verschiedene Salzgehalts-und Temperaturbedingungen.Zool. Jb. (Physiol.) 67, 407–486.

    Google Scholar 

  66. —— 1958b. Adaptation to salinity variations — some facts and problems.In: Physiological adaptation; edited byC. L. Prosser, Am. Physiol. Soc., Wash., D. C., 92–106.

    Google Scholar 

  67. —— 1960. Growth, food intake, and food conversion in a euryplastic fish exposed to different temperatures and salinities.Physiol. Zool. 33, 288–317.

    Google Scholar 

  68. —— 1962. Irreversible nongenetic adaptation.Comp. Biochem. Physiol. 5, 265–282.

    Google Scholar 

  69. —— 1963a. The effects of temperature and salinity on marine and brackish water animals. I. Temperature.Oceanogr. Mar. Biol. Ann. Rev. 1, 301–340.

    Google Scholar 

  70. -- 1963b. Über den Einfluß des Salzgehaltes auf verschiedene Lebensprozesse des KnochenfischesCyprinodon macularius. Veröff. Inst. Meeresforsch. Bremerhaven, Sonderbd. Drittes Meeresbiol. Symposion, 49–66.

  71. —— 1963c. Adaptation, a primary mechanism of evolution.In: Phylogeny and evolution of Crustacea; edited byH. B. Whittington &W. D. I. Rolfe, Mus. Comp. Zool., Special Publ., Cambridge, 27–50.

    Google Scholar 

  72. —— 1964a. Animals in aquatic environments: crustaceans.In: Handbook of physiology; Sec. 4, Am. Physiol. Soc., Wash., D. C., 669–682.

    Google Scholar 

  73. —— 1964b. The effects of temperature and salinity on marine and brackish water animals. II. Salinity and temperature-salinity combinations.Oceanogr. Mar. Biol. Ann. Rev. 2, 281–339.

    Google Scholar 

  74. —— &Kinne, E. M., 1962. Rates of development in embryos of a cyprinodont fish exposed to different temperature-salinity-oxygen combinations.Can. J. Zool. 40, 231–253.

    Google Scholar 

  75. Krijgsman, B. J. &Krijsgman, N. E., 1954. Osmoreception inJasus islandii.Z. vergl. Physiol. 37, 78–81.

    Google Scholar 

  76. Krogh, A., 1939. Osmotic regulation in aquatic animals. Cambridge Univ. Press, London and New York, 242 pp.

    Google Scholar 

  77. Krüger, G., 1962. Über die Temperatuadaption des Bitterlings (Rhodeus amarus Bloch).Z. wiss. Zool. 167, 87–104.

    Google Scholar 

  78. Lenhoff, H. M. &Bovaird, J., 1960. The requirement of trace amounts of environmental sodium for the growth and development ofHydra.Expl. Cell. Res. 20, 384–394.

    Google Scholar 

  79. Lieder, U., 1951. Der Stand der Zyklomorphoseforschung.Naturwissenschaflen 38, 39–44.

    Google Scholar 

  80. Loeb, J. &Wasteneys, H., 1912. On the adaptation of fish(Fundulus) to higher temperatures.J. Exp. Zool. 12, 543–557.

    Google Scholar 

  81. Lofts, B., 1956. The effects of salinity changes on the respiratory rate of the prawnPalaemonetes varians (Leach).J. Exp. Biol. 33, 730–736.

    Google Scholar 

  82. Loomis, W. F., 1954. Environmental factors controlling growth in hydra.J. Exp. Zool. 126, 223–234.

    Google Scholar 

  83. Maloeuf, N. S. R., 1938. Studies on the respiration (and osmoregalation) of animals.Z. vergl. Physiol. 25, 1–42.

    Google Scholar 

  84. Margalef, R., 1955. Temperatura, dimensiones y evolucion.Publs Inst. Biol. apl. (Barcelona) 19, 13–94.

    Google Scholar 

  85. Martret, G., 1939. Variations de la concentration moléculaire et de la concentration en chlorures de l'urine des téléostéens sténohalins en fonction des variations de salinité du milieu extérieur.Bull. Inst. océanogr. Monaco No. 774, 1–38.

    Google Scholar 

  86. Matutani, K., 1960a. Studies on the temperature and salinity resistance ofTigriopus japonicus. I. Changes in heat resistance in relation to acclimation temperatures ofTigriopus japonicus reared at 20°C.Physiol. Ecol., Kyoto 9, 35–38.

    Google Scholar 

  87. —— 1960b. Studies on the temperature and salinity resistance ofTigriopus japonicus. II. Changes in heat resistance in relation to acclimation temperatures ofTigriopus japonicus reared at 4 different temperatures.Physiol. Ecol. 9, 39–43.

    Google Scholar 

  88. —— 1961. Studies on the heat resistance ofTigriopus japonicus.Publ. Seto Mar. biol. Lab. 9, 379–411.

    Google Scholar 

  89. —— 1962. Studies on the temperature and salinity resistance ofTigriopus japonicus. IV. Heat resistance in relation to salinity ofTigriopus japonicus acclimated to dilute and concentrated sea waters.Physiol. Ecol. 10, 63–67.

    Google Scholar 

  90. Mayr, E., 1960. Chairman's introduction to the symposium on adaptive evolution.Proc. int. orn. Congr. 12. 1958, Helsinki, 495–498.

  91. McGinnis, M. O., 1911. Reactions ofBranchipus serratus to light, heat and gravity.J. Exp. Zool. 10, 227–240.

    Google Scholar 

  92. McLeese, D. W., 1956. Effects of temperature, salinity and oxygen on the survival of the American lobster.J. Fish. Res. Bd. Can. 13, 247–272.

    Google Scholar 

  93. Meijering, M. P. D., 1960. Herzfrequenz und Herzschlagzahlen zwischen Häutung und Eiablage bei Cladoceren.Z. wiss. Zool. 164, 127–142.

    Google Scholar 

  94. Merino, C. F., 1950. Studies on blood formation and destruction in the polycythemia of high altitude.Blood 5, 1–31.

    Google Scholar 

  95. Meyer, H., 1935. Die Atmung vonAsterias rubens und ihre Abhängigkeit von verschiedenen Außenfaktoren.Zool. Jb. (Physiol.) 55, 349–398.

    Google Scholar 

  96. Moore, W. G., 1955. Observations on heat death in the fairy shrimp,Streptocephalus seali.Proc. La. Acad. Sci. 18, 5–12.

    Google Scholar 

  97. Ostwald, W., 1904. Experimentelle Untersuchungen über den Saisonpolymorphismus bei Daphnien.Arch. Entw. Mech. Org. 18, 415–451.

    Google Scholar 

  98. Pantin, C. F. A., 1931. The adaptation ofGunda ulvae to salinity. III. The electrolyte exchange.J. Exp. Biol. 8, 82–94.

    Google Scholar 

  99. Pitt, T. K., Garside, E. T. &Hepburn, R. L., 1956. Temperature selection of the carp (Cyprinus carpio Linn.).Can. J. Zool. 34, 555–557.

    Google Scholar 

  100. Pora, E., 1939. Sur l'adaptation d'un teléostéen dulçaquicole,Carassius carassius L., au milieu salin.Bul. Soc. Sci. Cluj. (Roumanie) 9, 384–393.

    Google Scholar 

  101. Precht, H., 1949. Die Temperaturabhängigkeit von Lebensprozessen.Z. Naturf. 4b, 26–35.

    Google Scholar 

  102. —— 1951. Der Einfluß der Temperatur auf die Atmung und auf einige Fermente beim Aal(Anguilla vulgaris L.).Biol. Zbl. 70, 71–85.

    Google Scholar 

  103. —— 1955. Wechselwarme Tiere und Pflanzen.In: Precht, H., Christophersen, J. &Hensel, H.: Temperatur und Leben; Springer Verlag, Berl., 1–177.

    Google Scholar 

  104. —— 1958. Concepts of the temperature adaptation of unchanging reaction systems of coldblooded animals.In: Physiological adaptation; edited byC. L. Prosser, Am. physiol. Soc., Wash., D. C., 50–78.

    Google Scholar 

  105. -- 1961. Temperaturanpassungen bei wechselwarmen Tieren.Verb. dtsch. Zool. Ges. 1960 (Zool. Anz. Suppl. 24), 38–60.

  106. —— 1963. Anpassungen wechselwarmer Tiere zum Überleben extremer Temperaturen.Naturw. Rdschr. 16, 9–16.

    Google Scholar 

  107. —— 1964. Über die Resistenzadaptation wechselwarmer Tiere an extreme Temperaturen und ihre Ursachen.Helgol. Wiss. Meeresunters. 9, 392–411.

    Google Scholar 

  108. —— &Hensel, H., 1955. Temperatur und Leben. Springer Verlag, Berl., 514 pp.

    Google Scholar 

  109. Prosser, C. L. 1955. Physiological variation in animals.Biol. Rev. 30, 229–262.

    Google Scholar 

  110. —— 1958a. Physiological adaptation; edited byC. L. Prosser, Am. physiol. Soc., Wash., D. C., 185 pp.

    Google Scholar 

  111. —— 1958b. General summary: the nature of physiological adaptation.In: Physiological adaptation; edited byC. L. Prosser, Am. physiol. Soc., Wash., D. C., 167–180.

    Google Scholar 

  112. —— &Brown, F. A., Jr., 1961. Comparative animal physiology. 2nd ed., W. B. Saunders Co., Philadelphia, 688 pp.

    Google Scholar 

  113. Raffy, A., 1932a. dfrVariations de la consommation d'oxygène dissous au cours de la mort de poissons marins sténohalins passant de l'eau de mer à l'eau douce.C. r. hebd. Séanc. Acad. Sci. 194, 1522–1524.

    Google Scholar 

  114. -- 1932b. Recherches physiologiques sur le mécanisme de la mort des poissons sténohalins soumis à des variations de salinité.Bull. Inst. océanogr. Monaco No. 602, 1–11.

  115. —— 1933. Recherches sur le métabolisme respiratoire des poikilothermes aquatiques.Annls Inst. océanogr. Monaco 13, 259–393.

    Google Scholar 

  116. —— 1934. Influence des variations de salinité sur l'intensité respiratoire de la telphuse et de l'écrevisse.C. r. hebd. Séanc. Acad. Sci. 198, 680–681.

    Google Scholar 

  117. Rao, K. P., 1958. Oxygen consumption as a function of size and salinity inMetapenaeus monoceros Fab. from marine and brackish water environments.J. Exp. Biol. 35, 307–313.

    Google Scholar 

  118. Remane, A. &Schlieper, C., 1958. Die Biologie des Brackwassers.In: Die Binnengewässer edited byA. Thienemann, Schweizerbart, Stuttgart22, 348 pp.

    Google Scholar 

  119. Roberts, J. L., 1957. Thermal acclimation of metabolism in the crabPachygrapsus crassipes Randall. II. Mechanisms and the influence of season and latitude.Physiol. Zoöl. 30, 242–255.

    Google Scholar 

  120. —— 1964. Metabolic responses of fresh-water sunfish to seasonal photoperiods and temperatures.Helgol. Wiss. Meeresunters. 9, 459–473.

    Google Scholar 

  121. Roch, F., 1924. Experimentelle Untersuchungen anCordylophora caspia (Pallas) (=lacustris Allman) über die Abhängigkeit ihrer geographischen Verbreitung und ihrer Wuchsform von den physikalisch-chemischen Bedingungen des umgebenden Mediums.Z. Morph. Ökol. Tiere 2, 350–426.

    Google Scholar 

  122. Rose, M., 1910. Sur quelques tropismes.C. r. hebd. Séanc. Acad. Sci. 150, 1543–1545.

    Google Scholar 

  123. Scherbakoff, A. P., 1935. Über den Sauerstoffverbrauch von einigen Planktoncrustaceen. (Russian with German summary)Trud. limnol. Stanc. Kosino 19, 67–89.

    Google Scholar 

  124. Schlieper, C., 1929a. Über die Einwirkung niederer Salzkonzentrationen auf marine Organismen.Z. vergl. Physiol. 9, 478–514.

    Google Scholar 

  125. —— 1929b. Neue Versuche über die Osmoregulation wasserlebender Tiere.S. B. Ges. ges. Naturw. Marburg 64, 143–156.

    Google Scholar 

  126. —— 1950. Temperaturbezogene Regulationen des Grundumsatzes bei wechselwarmen Tieren.Biol. Zbl. 69, 216–226.

    Google Scholar 

  127. —— 1955. Über die physiologischen Wirkungen des Brackwassers (nach Versuchen an der MiesmuschelMytilus edulis).Kieler Meeresforsch. 11, 22–33.

    Google Scholar 

  128. Schmid, B., 1911. Ein Versuch über die Wärmeempfindlichkeit von Zoea-Larven.Biol. Zbl. 31, 358.

    Google Scholar 

  129. Schwabe, E., 1933. Über die Osmoregulation verschiedener Krebse (Malacostracen).Z. vergl. Physiol. 19, 183–236.

    Google Scholar 

  130. Segal, E., 1956. Microgeographic variation as thermal acclimation in an intertidal mollusc.Biol. Bull. mar. biol. Lab., Woods Hole 111, 129–152.

    Google Scholar 

  131. Shoup, C. S., 1932. Salinity of the medium and its effect on respiration in the sea anemone.Ecology 8, 81–85.

    Google Scholar 

  132. Simpson, G. G., 1958. Behavior and evolution.In: Behavior and evolution; edited byA. Roe &G. G. Simpson, Yale Univ. Pr., New Haven, 507–535.

    Google Scholar 

  133. —— &Tiffany, L. H., 1957. Life. An introduction to biology. Harcourt, Brace & Co., New York, 845 pp.

    Google Scholar 

  134. Smith, R. E., 1964. Brown fat in the rat: adaptive changes in cold.Helgol. Wiss. Meeresunters.9, 187–196.

    Google Scholar 

  135. Stanier, R. Y., Doudoroff, M. &Adelberg, E. A., 1957. The microbial world. Prentice-Hall., Inc., Englewood Cliffs, N. J., 682 pp.

    Google Scholar 

  136. Sumner, F. B. &Doudoroff, P., 1938. Some experiments upon temperature acclimatization and respiratory metabolism in fishes.Biol. Bull. mar. biol. Lab., Woods Hole 74, 403–429.

    Google Scholar 

  137. —— &Lanham, U. N., 1942. Studies of the respiratory metabolism of warm and cool spring fishes.Biol. Bull. mar. biol. Lab., Woods Hole 82, 313–327.

    Google Scholar 

  138. —— &Wells, N. A., 1935. Some relations between respiratory metabolism in fishes and susceptibility to certain anaesthetics and lethal agents.Biol. Bull. mar. biol. Lab., Woods Hole 69, 368–378.

    Google Scholar 

  139. Todd, M.-E. &Dehnel, P. A., 1960. The influence of temperature and salinity on heat tolerance in two grapsoid crabs,Hemigrapsus nudus andHemigrapsus oregonensis.Biol. Bull. mar. biol. Lab., Woods Hole 118, 150–172.

    Google Scholar 

  140. Tsukuda, H., 1960. Temperature adaptation in fishes. III. Temperature tolerance of the guppy,Lebistes reticulatus, in relation to the rearing temperature before and after birth.Biol. J. Nara Univ. 10, 11–14.

    Google Scholar 

  141. —— &Katayama, T., 1957. Temperature adaptation in fishes. I. The influences of rearing temperature on the temperature tolerance, growth rate and body form.Physiol. Ecol., Kyoto 7, 113–122.

    Google Scholar 

  142. Virabhadrachari, V., 1961. Structural changes in the gills, intestine and kidney ofEtroplus maculatus (Teleostei) adapted to different salinities.Quart. J. Microscop. Sci. 102, 361–369.

    Google Scholar 

  143. Wells, N. A., 1935. Variations in the respiratory metabolism of the Pacific killifish,Fundulus parvipinnis, due to size, season and continued constant temperature.Physiol. Zoöl. 8, 318–336.

    Google Scholar 

  144. Werner, B., 1962. Verbreitung und jahreszeitliches Auftreten vonRathkea octopunctata (M. Sars) undBougainvillia superciliaris (L. Agassiz) (Athecatae-Anthomedusae). Ein Beitrag zur kausalen marinen Tiergeographie.Kieler Meeresforsch. 18, 55–66.

    Google Scholar 

  145. -- 1963. Experimentelle Beobachtungen über die Wirksamkeit von Außenfaktoren in der Entwicklung der Hydrozoen und Erörterung ihrer Bedeutung für die Evolution.Veröff. Inst. Meeresforsch. Bremerhaven, Sonderbd. Drittes meeresbiologisches Symposion, 153–177.

  146. Wesenberg-Lund, C., 1900. Von dem Abhängigkeitsverhältnis zwischen dem Bau der Planktonorganismen und dem spezifischen Gewicht des Süßwassers.Biol. Zbl. 20, 606–619, 644–656.

    Google Scholar 

  147. Woltereck, R., 1913. Über Funktion, Herkunft und Entstehungsursachen der sog. „Schwebefortsätze“ pelagischer Cladoceren.Zoologica 26, 475–550.

    Google Scholar 

  148. Zahn, M., 1962. Die Vorzugstemperaturen zweier Cypriniden und eines Cyprinodonten und die Adaptations-Typen der Vorzugstemperatur bei Fischen.Zool. Beitr. 7, 15–25.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

This paper is dedicated to Prof. Dr. Wolfgang vonBuddenbrock on his 80th birthday, March 25, 1964. It is based in part on more comprehensive reviews (Kinne 1963a, c, 1964a, b) dealing with the effects of temperature and salinity on marine and brackish-water animals.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kinne, O. Non-genetic adaptation to temperature and salinity. Helgolander Wiss. Meeresunters 9, 433–458 (1964). https://doi.org/10.1007/BF01610056

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01610056

Keywords

  • Cold Acclimation
  • Thermal Acclimation
  • American Lobster
  • Constant Environmental Condition
  • Lethal Limit