Skip to main content

The effects of various temperature-salinity combinations on the body form of newly hatchedCyprinodon macularius (Teleostei)

Die Wirkungen verschiedener Temperatur-Salzgehalts Kombinationen auf die Körperform frischgeschlüpftercyprinodon macularius (Teleostei)

Kurzfassung

Eier des KnochenfischesCyprinodon macularius wurden 4 Stunden nach dem Laichakt in verschiedene Temperatur-Salzgehalts Kombinationen überführt und unter kontrollierten Bedingungen erbrütet. Alle zum Laichen angesetzten Elterntiere besaßen einen ähnlichen genetischen Hintergrund (Nachkommen eines einzigen Ausgangspaares) und waren während ihres ganzen Lebens bei 28° C und 35 ‰ S gehalten worden. Die frischgeschlüpften Jungfische wurden möglichst rasch fixiert und 13 ihrer Körperdimensionen vermessen. — Alle vermessenen Dimensionen werden durch Temperatur und Salzgehalt des Inkubationsmediums beeinflußt. Trägt man die Dimensionen gegen die Inkubationstemperatur auf, so ergeben sich in den drei Testsalzgehalten unterschiedliche Kurvenzüge. In Süßwasser nimmt die Körperlänge von 28° bis 33° C zu, verringert sich aber merkbar bei 34° C; Körpertiefe und -breite verhalten sich praktisch umgekehrt; die größte Länge wird also bei einer intermediären Temperaturstufe erreicht und ist korreliert mit Minimalwerten für Tiefe und Breite (v-förmige Kurven); die größte Tiefe und Breite wird in den niedrigsten (28° C) und in den höchsten (34° C) Testtemperaturen erreicht. In 35 ‰ verringert sich die Körperlänge mit abnehmender Temperatur und sowohl die Tiefe als auch die Breite des Körpers verändern sich nahezu direkt proportional (weitgehend isometrisches Wachstum). In 70 ‰ nimmt die Körperlänge von 26° nach 28° C rapide ab, zeigt aber bei 31° C nur geringfügige Veränderungen; Tiefe und Breite verändern sich harmonisch; das Ausmaß der Isometrie ist jedoch zumeist geringer als in 35 ‰. Mit abnehmendem Salzgehalt verringert sich der Oberflächen/Volumen-Quotient des Körpers. Die Befunde werden im Lichte früherer Untersuchungen anC. macularius und ähnlicher Studien an anderen aquatischen Organismen eingehend erörtert. Zweifellos kommt dem Einfluß der Umwelt — insbesondere während der sehr frühen Ontogenie — eine hervorragende Bedeutung zu für die funktionellen und strukturellen Eigenschaften und damit für die ökologische Potenz des aufwachsenden Individuums.

Summary

1. Spawning groups of the teleostCyprinodon macularius kept at 28° C in air-saturated water of 35 ‰ salinity were allowed to spawn at intervals of 3 to 4 days. Their eggs were transferred 4 hours after fertilization into a variety of temperature-salinity combinations and the newly hatched young fixed within 60 minutes. The body form of these young was then examined by measuring 13 different length, depth and width dimensions.

2. All 13 dimensions vary as a function of the temperature and salinity conditions effective during incubation. The dimension versus temperature plot results in differently shaped curves in the three test salinities.

3. In fresh water, body length decreases above and below 32° to 33° C, while the various depth and width measurements increase. Maximum total length values are therefore correlated with minimum depth and width values; the body tends to become deeper and wider in the lowest and highest temperatures tested.

4. In 35 ‰ body length decreases progressively with increasing temperature, especially near the upper critical temperature (34°, 35° C). All depth and width dimensions measured tend to decrease more or less harmoniously; hence there is little change in body form (isometry).

5. In 70 ‰ body length decreases rapidly from 26° to 28° C but changes little in the next higher temperature level (31° C). All depth and width dimensions measured tend to change proportionally (often not quite as harmoniously as in 35 ‰).

6. It seems possible that the increasing degree of disharmony in the order 35 ‰ < 70 ‰ < fresh water is related to the fact that(a) all eggs tested were laid and fertilized in 35 ‰ and remained there for 4 hours before being transferred into the test salinities and(b) 35 ‰ affords near optimum conditions for growth and reproduction. It seems possible that the structural consequences of exposure to the different incubation media may be different if spawning took place in fresh water or 70 ‰ instead of in 35 ‰.

7. Body depth and width tend to increase with decreasing salinity, resulting in rounder fish in fresh water with less surface area per unit volume.

8. Body dimensions (length as well as depth and width) are significantly smaller in 70 ‰ than in fresh water or 35 ‰.

9. Changes in body dimensions of hatching fry may be related to the concomittant changes in the amounts of dissolved gases, especially O2, in the various temperature and salinity combinations employed.

10. Environmental effects during very early ontogeny are of paramount importance for the functional and structural properties of the individual and may modify its ecological capacities.

Literature cited

  1. Baird, S. F. &Girard, C., 1853. Descriptions of new species of fishes collected by Mr. J. H. Clark, on the U.S. and Mexican Boundary Survey, under Lt. Col. Jas. D. Graham.Proc. Acad. Nat. Sci. 6, 387–390.

    Google Scholar 

  2. Barlow, G. W., 1958a. Daily movements of desert pupfish,Cyprinodon macularius, in shore pools of the Salton Sea, California.Ecology 39, 580–587.

    Google Scholar 

  3. —— 1958b. High salinity mortality of desert pupfish,Cyprinodon macularius.Copeia 3, 231–232.

    Google Scholar 

  4. Blaxter, J. H. S., 1957. The effect of temperature and other factors on myotome counts.Mar. Res. Scot., No. 1, 16 pp.

  5. —— &Hempel, G., 1961. Biologische Beobachtungen bei der Aufzucht von Heringsbrut.Helgol. Wiss. Meeresunters.,7, 260–283.

    Google Scholar 

  6. Boettger, C. R., 1950. Ein Beitrag zur Frage des Ertragens von Brackwasser durch Molluskenpopulationen.Hydrobiologia 2, 360–379.

    Google Scholar 

  7. Dannevig, A., 1950. The influence of the environment on number of vertebrae in plaice.Rep. Norweg: Fish. Mar. Invest. 9, 1–16.

    Google Scholar 

  8. Gabriel, M. L., 1944. Factors affecting the number and form of vertebrae inFundulus heteroclitus.J. exp. Zool. 95, 105–147.

    Google Scholar 

  9. Gunter, G., 1957. Temperature.In: Treatise on marine ecology and paleoecology; edited byJ. W. Hedgpeth.Geol. Soc. Am. Mem. No. 67, 159–184.

  10. Harder, W., 1957. Die Darmlänge bei Clupeoiden von Fundorten verschiedener geographischer Breite.Année biol. 33, 171–177.

    Google Scholar 

  11. Hass, G., 1936. Variationsstatistische Untersuchungen an Proben vonGobius microps Kroyer aus der Kieler Bucht und der Schlei.Schr. Naturw. Ver. Schl.-Holst. 21, 419–426.

    Google Scholar 

  12. —— 1937. Variabilitätsstudien anGobius niger L.,Gobius minutus Pallas undCottus scorpius L.Kieler Meeresforsch. 1, 279–321.

    Google Scholar 

  13. Heincke, F., 1881. Die Varietäten des Herings. T. 2.Vierter Ber. Comm. wiss. Unters. dtsch. Meere, Kiel, 1–86.

  14. Hempel, G., 1953. Die Temperaturabhängigkeit der Myomerenzahl beim Hering(Clupea harengus L.).Naturwissenschaften 40, 467–468.

    Google Scholar 

  15. —— &Blaxter, J. H. S., 1961. Einfluß von Temperatur und Salzgehalt auf Myomerenzahl und Körpergröße von Heringslarven.Z. Naturf. 16b, 227–228.

    Google Scholar 

  16. Holliday, F. G. T. &Blaxter, J. H. S., 1960. The effects of salinity on the developing eggs and larvae of the herring.J. Mar. biol. Ass. U.K. 39, 591–603.

    Google Scholar 

  17. Hubbs, C. L., 1922. Variation in the number of vertebrae and other meristic characters of fishes correlated with the temperature of water during development.Am. Nat. 56, 360–372.

    Google Scholar 

  18. —— 1926. The structural consequences of modifications of the developmental rate in fishes, considered in reference to certain problems of evolution.Am. Nat. 60, 57–81.

    Google Scholar 

  19. —— 1934. Racial and individual variation in animals, especially fishes.Am. Nat. 68, 115–128.

    Google Scholar 

  20. Itazawa, Y., 1959. Influence of temperature on the number of vertebrae in fish.Nature, Lond.183, 1408–1409.

    Google Scholar 

  21. Jordan, D. S., 1891. Relations of temperature to vertebrae among fishes.Proc. U. S. nat. Mus. 14, 107–120.

    Google Scholar 

  22. Kinne, O., 1956. Über den Einfluß des Salzgehaltes und der Temperatur auf Wachstum, Form und Vermehrung bei dem HydroidpolypenCordylophora caspia (Pallas), Athecata, Clavidae. I. Mitteilung über den Einfluß des Salzgehaltes auf Wachstum und Entwicklung mariner, brackischer und limnischer Organismen.Zool. Jb. 66, 565–638.

    Google Scholar 

  23. —— 1958a. Über die Reaktion erbgleichen Coelenteraten-Gewebes auf verschiedene Salzgehaltsund Temperaturbedingungen. II. Mitteilung über den Einfluß des Salzgehaltes auf Wachstum und Entwicklung mariner, brackischer und limnischer Organismen.Zool. Jb. (Physiol.) 67, 407–486.

    Google Scholar 

  24. -- 1958b. Adaptation to salinity variations — some facts and problems.In: Physiological Adaptation; edited byC. L. Prosser.Am. Physiol. Soc. Washington, D. C., 92–106.

  25. —— 1960. Growth, food intake, and food conversion in a euryplastic fish exposed to different temperatures and salinities.Physiol. Zoöl. 33, 288–317.

    Google Scholar 

  26. —— 1962. Irreversible nongenetic adaptation.Comp. Biochem. Physiol. 5, 265–282.

    Google Scholar 

  27. -- 1963a. Über den Einfluß des Salzgehaltes auf verschiedene Lebensprozesse des KnochenfischesCyprinodon macularius. Veröff. Inst. Meeresforsch. Bremerhaven, Sonderbd. Drittes meeresbiol. Symp., 49–66.

  28. —— 1963b. The effects of temperature and salinity on marine and brackish water animals. I. Temperature.Oceanogr. Mar. Biol. Ann. Rev. 1, 301–340.

    Google Scholar 

  29. —— 1964. The effects of temperature and salinity on marine and brackish water animals. II. Salinity and temperature-salinity combinations.Oceanogr. Mar. Biol. Ann. Rev. 2, 281–339.

    Google Scholar 

  30. —— &Kinne, E. M., 1962a. Effects of salinity and oxygen on developmental rates in a cyprinodont fish.Nature, Lond. 193, 1097–1098.

    Google Scholar 

  31. ——, —— 1962b. Rates of development in embryos of a cyprinodont fish exposed to different temperature-salinity-oxygen conditions.Can. J. Zool. 40, 231–253.

    Google Scholar 

  32. -- &Sweet, J. G., 1964. Die Umweltabhängigkeit der Körperform frischgeschlüpfterCyprinodon macularis (Teleostei).Naturwissenschaften (in press).

  33. Lindsey, C. C., 1954. Temperature-controlled meristic variation in the paradise fishMacropodus opercularis (L).Can. J. Zool. 32, 87–98.

    Google Scholar 

  34. —— 1962. Experimental study of meristic variation in a population of three spine sticklebacks,Gasterosteus aculeatus.Can. J. Zool. 40, 271–312.

    Google Scholar 

  35. Marckmann, K., 1954. Is there any correlation between metabolism and number of vertebrae (and other meristic characters) in the sea trout (Salmo trutta trutta L.)?Medd. Kom. Danm. Fisk. Havundersøg. 1, 1–9.

    Google Scholar 

  36. Martin, W. R., 1949. The mechanics of environmental control of body form in fishes.Univ. Toronto biol. Ser. No. 58, 1–92.

  37. Miller, R. R., 1948. The cyprinodont fishes of the Death Valley system of eastern California and southwestern Nevada.Misc. Publ. Mus. Zool. Univ. Mich. No. 68, 1–155.

  38. Möbius, K. &Heincke, F., 1883. Die Fische der Ostsee.Vierter Ber. Comm. wiss. Unters. dtsch. Meere, Kiel, 193–296.

  39. Molander, A. R. &Molander-Swedmark, M., 1957. Experimental investigations in plaice (Pleuronectes platessa Linné).Inst. Mar. Res. Lysekill, Ser. Biol. Rep. No. 7, 3–45.

  40. Moore, H. B., 1958. Marine ecology. John Wiley & Sons, Inc., New York, 493 pp.

    Google Scholar 

  41. Morris, R. W. &Scheer, B. T., 1957. The relation of meristic characters in fishes to temperature and water movements.Année biol. 33, 159–161.

    Google Scholar 

  42. Mottley, C. McC., 1934. The effect of temperature during development on the number of scales in the Kamloops troutSalmo kamloops Jordan.Contr. Can. Biol. Fish. 8, 254–263.

    Google Scholar 

  43. —— 1937. The number of vertebrae in trout(Salmo).J. biol. Bd. Can. 3, 169–176.

    Google Scholar 

  44. Netsch, N. F. &Witt, A., Jr., 1962. Contributions to the life history of the longnose gar(Lepisosteus osseus) in Missouri.Transact. Am. Fish. Soc. 91, 251–262.

    Google Scholar 

  45. Pearse, A. S. &Gunter, G., 1957. Salinity.In: Treatise on marine ecology and palaeoecology. I; edited byJ. W. Hedgpeth.Geol. Soc. Am. Mem. No. 67, 129–157.

  46. Remane, A., 1934. Die Brackwasserfauna.Verh. dtsch. zool. Ges. 36, 34–74.

    Google Scholar 

  47. —— 1940. Einführung in die zoologische Ökologie der Nord- und Ostsee (Teil Ia).In: Die Tierwelt der Nord- und Ostsee; edited byA. Remane, Akademische Verlagsgesellschaft, Leipzig, 124 pp.

    Google Scholar 

  48. —— &Schlieper, C., 1958. Die Biologie des Brackwassers.In: Die Binnengewässer; edited byA. Thienemann, Vol. XXII, E. Schweizerbart, Stuttgart, 348 pp.

    Google Scholar 

  49. Rounsefell, G. A. &Dahlgren, E. H., 1932. Fluctuations in the supply of herring,Clupea pallasii, in Prince William Sound, Alaska.Bull. Bur. Fish. Wash. 47, 263–291.

    Google Scholar 

  50. Schmidt, J., 1917. Racial investigations. II. Constancy investigations continued.C. r. Trav. Lab., Carlsberg 14, 1–19.

    Google Scholar 

  51. —— 1919a. Racial studies in fishes. II. Experimental investigations withLebistes reticulatus (Peters) Regan.J. Genet. 8, 147–153.

    Google Scholar 

  52. —— 1919b. Racial investigations. III. Investigations withLebistes reticulatus (Peters) Regan.C. r. Trav. Lab., Carlsberg 14, 1–8.

    Google Scholar 

  53. —— 1920. Racial investigations. V. Experimental investigations withZoarces viviparous L.C. r. Trav. Lab., Carlsberg 14, 1–14.

    Google Scholar 

  54. —— 1921. Racial investigations. VII. Annual fluctuations of racial characters inZoarces viviparus L.C. r. Trav. Lab., Carlsberg 14, 1–24.

    Google Scholar 

  55. —— 1930. Racial investigations. X. The Atlantic cod (Gadus callarias L.) and some local races of the same.C. r. Trav. Lab., Carlsberg 18, 1–72.

    Google Scholar 

  56. Schultz, L. P., 1926. Temperature-controlled variation in the golden shiner,Notemigonus crysoleucas.Pap. Mich. Acad. Sci. 7, 417–432.

    Google Scholar 

  57. Segerstråle, S. G., 1957. Baltic Sea.In: Treatise on marine ecology and paleoecology. I; edited byJ. W. Hedgpeth.Geol. Soc. Am. Mem. No. 67, 751–800.

  58. Seymour, A. H., 1956. Effects of temperature upon young chinook salmon. Dissertation (Ph. D. Thesis), Univ. Washington, Seattle, 127 pp.

    Google Scholar 

  59. —— 1959. Effects of temperature upon the formation of vertebrae and fin rays in young chinook salmon.Trans. Am. Fish. Soc. 88, 58–69.

    Google Scholar 

  60. Tåning, Å. V., 1944. Experiments on meristic and other characters in fishes. I. On the influence of temperature on some meristic characters in sea-trout and the fixation-period of these characters.Medd. Kom. Danm. Fisk. Havundersøg. 11, 1–66.

    Google Scholar 

  61. —— 1946. Stage of determination of vertebrae in teleostean fishes.Nature, Lond. 157, 594–595.

    Google Scholar 

  62. —— 1950. Influence of the environment on number of vertebrae in teleostean fishes.Nature, Lond. 165, 28.

    Google Scholar 

  63. —— 1952. Experimental study of meristic characters in fishes.Biol. Rev. 27, 169–193.

    Google Scholar 

  64. Vladykov, V. D., 1934. Environmental and taxonomic characters of fishes.Trans. Roy. Can. Inst. 20, 99–140.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sweet, J.G., Kinne, O. The effects of various temperature-salinity combinations on the body form of newly hatchedCyprinodon macularius (Teleostei). Helgolander Wiss. Meeresunters 11, 49–69 (1964). https://doi.org/10.1007/BF01611131

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01611131

Keywords

  • Body Length
  • Body Form
  • Body Dimension
  • Width Dimension
  • Test Salinity