Skip to main content
  • Published:

Nutritional potentials inZoanthus sociathus (Coelenterata, Anthozoa)

Ernährungsmöglichkeiten beiZoanthus sociatus (Coelenterata, Anthozoa)

Kurzfassung

Die KrustenanemoneZoanthus sociatus (Ellis) lebt in Symbiose mit Dinoflagellaten der GattungGymnodinium. Feinstrukturelle, physiologische und biochemische Aspekte dieser symbiotischen Partnerschaft wurden untersucht.Z. sociatus zeichnet sich durch eine autotrophe Ernährungsweise aus, indem Photosyntheseprodukte der intrazellulär lebenden Zooxanthellen verwertet werden. Darüber hinaus ernährt sichZ. sociatus auch heterotroph durch die Aufnahme von Detritus, Bakterien und gelösten organischen Substanzen. Freiland- und Laboruntersuchungen erbrachten jedoch keine Hinweise, daß lebendes Zooplankton verwertet wird, obgleich in bezug auf das Verhalten gegenüber Nahrungsstoffen, die Ultrastruktur der Mesenterialfilamente und die Art der Verdauung keine wesentlichen Abweichungen gegenüber anderen planktonfressenden Coelenteraten festgestellt werden konnten.Z. sociatus nimmt offensichtlich — ebenso wie andere wirbellose Riffbewohner — eine polytrophe Stellung innerhalb des Ökosystems Korallenriff ein. Die Vielseitigkeit der Ernährungsweise wird unter dem Gesichtspunkt der ökologischen Stabilität des Lebensraumes Korallenriff erörtert.

Summary

1. The tropical coral reef-dwelling coelenterateZoanthus sociatus (Ellis) lives in mutualistic symbiosis with dinoflagellates of the genusGymnodinium. These algae are intracellular.

2. Analysis of the photosynthetic contribution of these endosymbionts shows a direct transfer of photosynthate from algae to animal and utilization of such substances by the animal. Such transfer does not involve destruction of the algae. In vitro studies of the photosynthetic products of the algae show that they synthesize a wide range of metabolites, but selectively release only a few including glycerol, glucose and alanine. These data indicate that such organisms possess an autotrophic mode of nutrition.

3.Z. sociatus shows a well defined feeding behaviour when offered homogenates ofEchinometra eggs. A similar behaviour may be elicited with reduced glutathione. Proline and glycine produced “mouth opening” responses but not the complete feeding response. Alanine, glutamic acid and aspartic acid gave no response.

4. The ultrastructure of the mesenterial filaments shows that the tissue is well differentiated and possesses nematocysts (holotrichous isorhyzas). Several distinct cell types including mucus secreting and “zymogen” cells have been recognized. These cells probably play an important role in extracellular digestion.

5. The rate of digestion of exogenously supplied proteins byZ. sociatus compares favourably with that of sea anemones and corals. Digestion is both extracellular and intracellular, the latter process taking place after particle phagocytosis in the “digestive-excretory” cells of the mesenteries proximal to the filament.

6.Z. sociatus can absorb dissolved amino acids and sugars from very low concentrations (10−6–10−7M), and may incorporate such metabolites particularly into reproductive tissue.

7. The pycnotic zooxanthellae found in the cells of the “digestive-excretory” zone of the mesenteries are probably derived from other areas of the animal gastroderm. These algae appear to undergo senesence in this tissue, but are not digested by the animals. This is very likely a normal phenomenon, in which case the “digestive-excretory” zone of the filament could be regarded as a “grave yard” for old defunct members of the algal population.

8. The polytrophic habit of reef-dwelling invertebrates with photosynthetic endosymbionts is viewed as an important parameter of coral reef nutrition, lending a great deal of nutritional versatility to animals. Such plasticity is probably a reflection of microinstability within an overall stable ecosystem.

Literature cited

  • Ashworth, J. H., 1898. The stomodaeum and mesenterial filaments ofXenia. Proc. R. Soc. (B)63, 443–446.

    Google Scholar 

  • —— 1899. The structure ofXenia hicksoni nov. sp. with some observations onHeteroxenia. Q. Jl microsc. Sci.42, 245–304.

    Google Scholar 

  • Ayala, F. J., Hedgecock, D., Zumwalt, G. S. &Valentine, J. W., 1973. Genetic variation inTridacna maxima, an ecological analog of some unsuccessful evolutionary lineges. Evolution, Lancaster, Pa.27, 177–191.

    Google Scholar 

  • Boschma, H., 1925a. The nature of the association between Anthozoa and zooxanthellae. Proc. natl Acad. Sci. U.S.A.11, 65–67.

    Google Scholar 

  • —— 1925b. Feeding reactions and digestion in the coral polypsAstrangia danae with notes on its symbiosis with zooxanthellae. Biol. Bull. mar. biol. Lab., Woods Hole49, 407–439.

    Google Scholar 

  • —— 1926. On the food of reef corals. Proc. Sect. Sci. K. ned. Acad. Wet.29, 993–997.

    Google Scholar 

  • Cowie, D. B., Bolton, E. T. &Sands, M. K., 1952. The labelling of bacterial cells with35S for the production of high specific activity compounds. Archs Biochem. Biophys.35, 140–145.

    Google Scholar 

  • DiSalvo, L. H., 1971a. Ingestion and assimilation of bacteria by two scleractinian coral species. In: Experimental coelenterate biology. Ed. byH. M. Lenhoff, L. Muscatine &L. V. Davis. Univ. of Hawaii Press, Honolulu, 129–136.

    Google Scholar 

  • —— 1971b. Regenerative functions and microbial ecology of coral reefs: labelled bacteria in a coral reef ecosystem. J. exp. mar. Biol. Ecol.7, 123–136.

    Google Scholar 

  • Dodge, J. D., 1966. The Dinophyceae. In: The chromosomes of the algae. Ed. byM. B. Godward. Arnold, London, 96–115.

    Google Scholar 

  • —— 1970. Changes in chloroplast fine structure during the autumnal senescence ofBetula leaves. Ann. Bot.34, 817–824.

    Google Scholar 

  • —— 1971. Fine structure of the Pyrrophyta. Bot. Rev.37, 481–508.

    Google Scholar 

  • Droop, M. R., 1963. Algae and invertebrates in symbiosis. Symp. Soc. gen. Microbiol.13, 171–199.

    Google Scholar 

  • Ellis, J., 1767. An account of theActinia sociata. Phil. Trans. R. Soc.57, 428–437.

    Google Scholar 

  • Fankbonner, P. V., 1971. Intracellular digestion of symbiotic zooxanthellae by host amoebocytes in giant clams (Bivalvia, Tridacnidae), with a note on the nutritional role of the hypertrophied siphonal epidermis. Biol. Bull. mar. biol. Lab., Woods Hole141, 222–234.

    Google Scholar 

  • Franker, C. K., 1971. Electrophoretic identity of polypeptides from the nuclear membrane ofAnthropleura — associated zooxanthellae. J. Physcol.7, 20–24.

    Google Scholar 

  • Fulton, C., 1963. Proline control of the feeding reaction ofCordylophora. J. gen. Physiol.46, 823–837.

    Google Scholar 

  • Glynn, P. W., 1973. Aspects of the ecology of coral reefs in the Western Atlantic region. In: Biology and geology of coral reefs. Ed. byO. A. Jones &R. Endean. Acad. Press, New York,2, 271–324.

    Google Scholar 

  • Gohar, H. A., 1940. Studies on the Xeniidae of the Red Sea. Publs mar. biol. Stn. Ghardaqa2, 25–118.

    Google Scholar 

  • —— 1948. A description and some biological studies of a new alcyonarian speciesClavularia hamra Gohar. Publs mar. biol. Stn. Ghardaqa6, 3–33.

    Google Scholar 

  • Gomori, G., 1950. An improved histochemical technique for acid phosphatase. Stain Technol.25, 81–85.

    Google Scholar 

  • Goreau, T. F., 1959. The ecology of Jamaican coral reefs. I. Species composition and zonation. Ecology40, 69–90.

    Google Scholar 

  • —— 1961. Problems of growth and calcium deposition in reef corals. Endeavour20, 32–40.

    Google Scholar 

  • —— 1963. Calcium carbonate deposition by coralline algae and hermatypic corals in relation to their roles as reef builders. Ann. N. Y. Acad. Sci.109, 127–167.

    Google Scholar 

  • —— 1964. Mass expulsion of zooxanthellae from Jamaican reef communities after hurricane Flora. Science N. Y.145, 383–386.

    Google Scholar 

  • —— &Hartman, W. D., 1963. Boring sponges as controlling factors in the formation and maintenance of coral reefs. In: Mechanisms of hand tissue destruction. Ed. byR. F. Sognnaes. Am. Ass. for the Advancement of Science, Washington, 25–54.

    Google Scholar 

  • —— &Philpott, D. E., 1956. Electron micrographic studies of flagellated epithelia in madreporarian corals. Expl Cell Res.10, 552–556.

    Google Scholar 

  • —— &Yonge, C. M., 1971. Reef corals: Autotrophs or heterothrops? Biol. Bull. mar. biol. Lab., Woods Hole141, 247–260.

    Google Scholar 

  • —— 1973. On utilization of photosynthetic products from zooxanthellae and of dissolved amino acids inTridacna maxima f.elongata (Roeding). J. Zool., Lond.169, 417–454.

    Google Scholar 

  • Grassle, J. F., 1973. Variety in coral reef communities. In: Biology and geology of coral reefs. Ed. byO. A. Jones &R. Endean. Acad. Press, New York,2, 247–270.

    Google Scholar 

  • Greene, R. W., 1970. Symbiosis in sacoglossan opisthobranchs: translocation of photosynthetic products from chloroplasts to host tissue. Malacologia10, 369–380.

    Google Scholar 

  • ——, 1972. Symbiosis in sacoglossan opisthobranchs: photosynthetic products of animal-chloroplast associations. Mar. Biol.14, 253–259.

    Google Scholar 

  • Hadden, E. M., 1968. The relationship betweenZoanthus sociatus and its zooxanthellae. Ph. D. Diss. Yale Univ., 104 pp.

  • Heberts, C., 1970. Note sur un zoanthaine de la cote sudouest de madagascar. Recl. Trav. Stn. mar. Endoume10, 305–315.

    Google Scholar 

  • Hessler, R. R. &Sanders, H. L., 1967. Faunal diversity in the deep sea. Deep Sea Res.14, 65–78.

    Google Scholar 

  • Holt, C. von, 1968. Uptake of glycine and release of nucleoside polyphosphates by zooxanthellae. Comp. Biochem. Physiol.26, 1071–1079.

    Google Scholar 

  • —— &Holt, M. von, 1968a. Transfer of photosynthetic products from zooxanthellae to coelenterates hosts. Comp. Biochem. Physiol.24, 73–81.

    Google Scholar 

  • —— 1968b. The secretion of organic compounds by zooxanthellae isolated from various types ofZoanthus. Comp. Biochem. Physiol.24, 83–92.

    Google Scholar 

  • Johannes, R. W., 1967. Ecology of organic aggregates in the vicinity of a coral reef. Limnol. Oceanogr.12, 189–195.

    Google Scholar 

  • —— &Kuenzel, N. T., 1970. The role of zooplankton in the nutrition of some scleractinian corals. Limnol. Oceanogr.15, 579–586.

    Google Scholar 

  • Kanwisher, J. W. &Wainwright, S. A., 1967. Oxygen balance in some reef corals. Biol. Bull. mar. biol. Lab., Woods Hole133, 378–390.

    Google Scholar 

  • Kay, D. H., 1965. Techniques for electron microscopy. Davis, Philadelphia, Penn., 560 pp.

    Google Scholar 

  • Kevin, M., Hall, W. T., McLaughlin, J. J. &Zahl, P. A., 1969.Symbiodinium microadriaticum Freudenthal, a revised taxonomic description, ultrastructure. J. Phycol.5, 341–350.

    Google Scholar 

  • Lang, J. C., 1973. Interspecific aggression by scleractinian corals. II. Why the race is not only to the swift. Bull. mar. Sci.23, 260–279.

    Google Scholar 

  • Lehman, J. T. &Porter, J. W., 1973. Chemical activation of feeding in the caribbean reef-building coralMontastrea cavernosa. Biol. Bull. mar. biol. Lab., Woods Hole145, 140–149.

    Google Scholar 

  • Lenhoff, H. M., 1968a. Chemical perspectives on the feeding response, digestion and nutrition of selected coelenterates. In: Chemical zoology. Ed. byM. Florkin &B. Scheer. Acad. Press, New York,2, 157–221.

    Google Scholar 

  • —— 1968b. Behavior, hormones and hydra. Science, N. Y.166, 434–442.

    Google Scholar 

  • Lewis, D. H. &Smith, D. C., 1971. The autotrophic nutrition of symbiotic marine coelenterates with special reference to hermatypic corals. I. Movement of photosynthetic products between the symbionts. Proc. R. Soc. (B)178, 111–129.

    Google Scholar 

  • Lindstedt, K. J., 1971. Chemical control of feeding behavior. Comp. Biochem. Physiol.39A, 553–581.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L. &Randall, R. J., 1951. Protein measurement with the Folin phenol reagent. J. biol. Chem.193, 265–275.

    Google Scholar 

  • McLaughlin, J. J. &Zahl, P. A., 1966. Endozoic algae. In: Symbiosis. Ed. byS. M. Henry. Acad. Press, New York,1, 257–297.

    Google Scholar 

  • Mariscal, R. N. &Lenhoff, H. M., 1968. The chemical control of feeding behavior inCyphastrea ocellina and some other Hawaiian corals. J. exp. Biol.49, 689–699.

    Google Scholar 

  • Murdock, G. R. &Lenhoff, H. M., 1968. Alcohol soluble proteins: their formation and assimilation during intracellular digestion inHydra littoralia andAiptasia sp. Comp. Biochem. Physiol.26, 963–970.

    Google Scholar 

  • Muscatine, L., 1967. Glycerol excretion by symbiotic algae from corals andTridacna and its control by the host. Science, N. Y.156, 516–519.

    Google Scholar 

  • —— 1971. Endosymbiosis of algae and coelenterates. In: Experimental coelenterate biology. Ed. byH. M. Lenhoff, L. Muscatine &L. V. Davis. Univ. of Hawaii Press, Honolulu, 179–191.

    Google Scholar 

  • —— 1973. Nutrition of corals. In: Biology and geology of coral reefs. Ed. byO. A. Jones &R. Endean. Acad. Press, New York, 77–115.

    Google Scholar 

  • —— &Cernichiari, E., 1969. Assimilation of photosynthetic products of zooxanthellae by a reef coral. Biol. Bull. mar. biol. Lab., Woods Hole137, 506–523.

    Google Scholar 

  • —— &Carnichiari, E., 1972. Some factors influencing selective release of soluble organic material by zooxanthellae from reef corals. Mar. Biol.13, 298–308.

    Google Scholar 

  • Nicol, J. A., 1959. Digestion in sea anemones. J. mar. biol. Ass. U.K.38, 469–476.

    Google Scholar 

  • Odum, H. T. &Odum, E. P., 1956. Corals as producers, herbivores, carnivores and possible decomposers. Ecology37, 385.

    Google Scholar 

  • Pardy, R. L. &Muscatine, L., 1973. Recognition of symbiotic algae byHydra viridis. A quantitative study of the uptake of living algae by aposymbioticH. viridis. Biol. Bull. mar. biol. Lab., Woods Hole145, 565–579.

    Google Scholar 

  • Porter, J. W., 1973. Zooplankton feeding by the Caribbean reef-building coralMontastrea cavernosa. Second international symposium on coral reefs. (in press).

  • Powell, J. R., 1971. Genetic polymorphism in varied environments. Science, N.Y.,174, 1035–1036.

    Google Scholar 

  • Pütter, A., 1909. Die Ernährung der Wassertiere und der Stoffhaushalt der Gewässer. Fischer, Jena, 168 pp.

    Google Scholar 

  • Ramsey, J. A., 1971. Insect rectum. Phil. Trans. R. Soc. (B)262, 251–260.

    Google Scholar 

  • Reimer, A. A., 1971a. Chemical control of feeding behavior and role of glycine in the nutrition ofZoanthus (Coelenterate, Zoanthidea). Comp. Biochem. Physiol.39A, 743–759.

    Google Scholar 

  • —— 1971b. Feeding behavior in the Hawaiian ZoanthidsPolythoa andZoanthus. Pacif. Sci.25, 512–520.

    Google Scholar 

  • Roffman, B., 1968. Patterns of oxygen exchange in some Pacific corals. Comp. Biochem. Physiol.27, 405–418.

    Google Scholar 

  • Rogers, A. W., 1969. Techniques of autoradiography. Elsevier, Amsterdam, 338 pp.

    Google Scholar 

  • Sanders, H. L., 1969. Benthic marine diversity and the time stability hypothesis. Brookhaven Symp. Biol.22, 71–80.

    Google Scholar 

  • Schmitter, R. E., 1971. The fine structure ofGonyanlax polyedra, a bioluminescent marine dinoflagellate. J. Cell Sci.9, 147–173.

    Google Scholar 

  • Slobodkin, L. B. &Sanders, H. L., 1969. On the contribution of environmental predictability to species diversity. Brookhaven Symp. Biol.22, 82–93.

    Google Scholar 

  • Smith, D. C., Muscatine, L. &Lewis, D. H., 1969. Carbohydrate movement from autotrophs to heterotrophs in parasitic and mutualistic symbiosis. Biol. Rev.44, 17–90.

    Google Scholar 

  • Schlichter, D., 1973. Ernährungsphysiologische und ökologische Aspekte der Aufnahme in Meerwasser gelöster Aminosären durchAnemonia sulcata (Coelenterata, Anthozoa). Oecologia11, 315–350.

    Google Scholar 

  • Sorokin, Y. I., 1973. Microbial aspects of the productivity of coral reefs. In: Biology and geology of coral reefs. Ed. byO. A. Jones &R. Endean. Acad. Press, New York2, 17–45.

    Google Scholar 

  • Stephens, G. C., 1967. Dissolved organic material as a nutritional source for marine and estuarine invertebrates. In: Estuaries. Ed. byG. H. Lauff. Am. Ass. for the Advancement of Science, Washington, 367–373.

    Google Scholar 

  • —— 1968. Dissolved organic matter as a potential source of nutrition for marine animals. Am. Zool.8, 95–106.

    Google Scholar 

  • Taylor, D. L., 1968. In situ studies on the cytochemistry and ultrastructure of a symbiotic marine dinoflagellate. J. mar. biol. Ass. U.K.48, 349–366.

    Google Scholar 

  • —— 1969a. The nutritional relationship ofAnemonia sulcata (Pennant) and its dinoflagellate symbiont. J. Cell Sci.4, 751–762.

    Google Scholar 

  • Taylor, D. L. 1969b. On the regulation and maintenance of algal numbers in zooxanthellae — coelenterate symbiosis. J. mar. biol. Ass. U.K.49, 1057–1065.

    Google Scholar 

  • —— 1969c. Identity of zooxanthellae isolated from Pacific Tridacnidae. J. Phycol.5, 336–340.

    Google Scholar 

  • —— 1973. Symbiotic pathway of carbon in coral reef ecosystems. Present status and future prospects. Helgoländer wiss. Meeresunters.24, 276–283.

    Google Scholar 

  • -- 1974. Nutrition of algal-invertebrate symbiosis. I. Utilization of soluble organic nutrients by symbiont free hosts. (In press).

  • Trench, R. K., 1969. The physiology and biochemistry of zooxanthellae symbiotic with marine coelenterates. Ph. D. Diss. Univ. of California, Los Angeles, 140 pp.

    Google Scholar 

  • —— 1970. Synthesis of a mucous cuticle by a zoanthid. Nature, Lond.227, 1155–1156.

    Google Scholar 

  • —— 1971a. The physiology and biochemistry of zooxanthellae symbiotic with marine coelenterates. I. The assimilation of photosynthetic products of zooxanthellae by two marine coelenterates. Proc. R. Soc. (B)177, 225–235.

    Google Scholar 

  • —— 1971b. The physiology and biochemistry of zooxanthellae symbiotic with marine coelenterates. II. Liberation of fiexed14C by zooxanthellaein vitro. Proc. R. Soc. (B)177, 237–250.

    Google Scholar 

  • —— 1971c. The physiology and biochemistry of zooxanthellae symbiotic with marine coelenterates. III. The effect of homogenates of host tissues on the excretion of photosynthetic productsin vitro by zooxanthellae from two marine coelenterates. Proc. R. Soc. (B)177, 251–264.

    Google Scholar 

  • —— 1973. Further studies on the mucopolysaccharide secreted by the pedal gland of the marine slugTridachia crispata (Opisthobranchia, Sacoglossa). Bull. mar. Sci.23, 299–312.

    Google Scholar 

  • —— &Gooday, G. W., 1973. Incorporating of3H-leucine into protein by animal tissues and by endosymbiotic chloroplasts inElysia viridis Montagu. Comp. Biochem. Physiol.44A, 321–330.

    Google Scholar 

  • —— &Smith, D. C., 1973. The association between chloroplasts ofCodium fragile and the molluscElysia viridis. II. Chloroplast ultrastructure and photosynthetic carbon fixation inE. viridis. Proc. R. Soc. (B)184, 63–81.

    Google Scholar 

  • —— —— —— 1974. The association between chloroplasts ofCodium fragile and the molluscElysia viridis. III. Movement of photosynthetically fixed14C in tissues of intact livingE. viridis and inTridachia crispata. Proc. R. Soc. (B)185, 453–464.

    Google Scholar 

  • —— &Bystrom, B. G., 1969. Chloroplasts as functional organelles in animal tissues. J. Cell Biol.42, 404–417.

    Google Scholar 

  • —— &Muscatine, L., 1970. Utilization of photosynthetic products of symbiotic chloroplasts in mucus synthesis byPlacobranchus ianthobapsus (Gould) (Opisthobranchia, Sacoglossa). Comp. Biochem. Physiol.37, 113–117.

    Google Scholar 

  • —— —— —— 1972. Symbiotic chloroplasts: their photosynthetic products and contribution to mucus synthesis in two marine slugs. Biol. Bull. mar. biol. Lab., Woods Hole142, 335–349.

    Google Scholar 

  • Vandermulen, J. H., 1972. Studies on skeleton formation, tissue ultrastructure and physiology of calcification in the reef coralPocillopora damicornis (L.). Ph. D. Diss. Univ. of California, Los Angeles, 236 pp.

    Google Scholar 

  • —— &Muscatine, L., 1972. The effect of inhibitors of photosynthesis on zooxanthellae in corals and other marine invertebrates. Mar. Biol.16, 185–191.

    Google Scholar 

  • Yonge, C. M., 1931. Studies on the physiology of corals. III. Assimilation and excretion. Scient. Rep. Gt. Barrier Reef Exped.1, 83–91.

    Google Scholar 

  • —— 1940. The biology of reef-building corals. Scient. Rep. Gr. Barrier Reef Exped.1, 353–391.

    Google Scholar 

  • —— 1968. Living corals. Proc. R. Soc. (B)169, 209–260.

    Google Scholar 

  • —— 1973. The nature of reef-building (hermatypic) corals. Bull. mar. Sci.23, 1–15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution No. 601 from the Bermuda Biological Station for Research, Inc. St. Georges West, Bermuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trench, R.K. Nutritional potentials inZoanthus sociathus (Coelenterata, Anthozoa). Helgolander Wiss. Meeresunters 26, 174–216 (1974). https://doi.org/10.1007/BF01611382

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01611382

Keywords