Skip to main content
  • General Implication Of Systems And Models For Metabolism
  • Published:

Elemente einer systemtheoretischen Betrachtung des Stoffwechsels

Elements of a systems-theoretical approach to metabolism

Abstract

The discussion of general formal properties of metabolizing systems reveals the justification of applying tentatively General Systems Theory as a most general background. Whereas set-theoretical and graph-theoretical considerations, because of their very abstract nature, are obviously not well suited, the application of the theory of compartmented systems, elaborated on the basis of network or linear systems theories, seems to be useful. In metabolic studies physical models in the sense of computers operating as simulators are indispensable tools for research. A comparison between cybernetic and kinetic models demonstrates the many links and similarities rather than contrasts existing between them. Some epistemological problems are also included in the extended discussion of the concepts of information and energy, basical for these models.

Zusammenfassung

  1. 1.

    Bestehende Ansätze zur mathematischen Darstellung der Allgemeinen Systemtheorie auf mengentheoretischer und graph-theoretischer Grundlage werden zur Erörterung abstrakter Systeme genommen; ihre Anwendbarkeit auf Stoffwechselprobleme ist beschränkt.

  2. 2.

    Die mathematisch gut durchgearbeiteten Kompartimentalsysteme eignen sich demgegenüber zur Analyse der Tracer-Kinetik und von zellulären Stoffwechselvorgängen.

  3. 3.

    Die Bedeutung konkreter physikalischer Computer-Modelle zum Studium (der Simulation) von Stoffwechselproblemen wird an einigen Beispielen eingehend besprochen.

  4. 4.

    Stoffwechselmodelle auf kinetischer und kybernetischer Basis werden miteinander verglichen, die Analogie von deterministischen und stochastischen Modellen herausgestellt und metabolisch bedeutsame Systemeigenschaften wie Stabilität, Kontrolle und Oszillationen gesondert beschrieben.

  5. 5.

    In die Diskussion der den Modellvorstellungen inhärenten Begriffe von „Information“, „Energie“ und „Struktur“ werden einige epistemologische Fragen eingeschlossen.

Zitierte literatur

  • Ackerman, E. &Hazelrig, J. B., 1964. Computer applications to the evaluation of dynamic biological processes.In: Dynamic clinical studies with radioisotopes. Ed. by R. M. Kniseley & W. N. Tauxe. U.S. Atomic Energy Commission, Washington, D.C., 19–53.

    Google Scholar 

  • Arley, N. &Buch, K. R., 1966. Introduction to the theory of probability and statistics. Wiley & Sons, New York, 240 pp.

    Google Scholar 

  • Ashby, W. R., 1961. General system theory and the problem of the black box.In: Regelungsvorgänge in lebenden Wesen. Hrsg. v. H. Mittelstaedt. Oldenbourg, München, 51–62.

    Google Scholar 

  • Beier, W., 1965. Einführung in die theoretische Biophysik. G. Fischer, Stuttgart, 237 pp.

    Google Scholar 

  • Bergner, P. E., 1964, Kinetic theory. Some aspects of the study of metabolic processes.In: Dynamic clinical studies with radioisotopes. Ed. by R. M. Kniseley & W. N. Tauxe. U.S. Atomic Energy Commission, Washington, D.C., 1–18.

    Google Scholar 

  • Berman, M., 1963. The formulation and testing of models.Ann. N.Y. Acad. Sci. 108, 182–194.

    Google Scholar 

  • Bernhard, R., 1964. Survey of some biological aspects of irreversible thermodynamics.J. theoret. Biol. 7, 532–557.

    Google Scholar 

  • Bertalanffy, L. von, 1950a. An outline of general system theory.Br. J. Phil. Sci. 1, 134–165.

    Google Scholar 

  • —— 1950b. The theory of open systems in physics and biology.Science 111, 23–29.

    Google Scholar 

  • Brillouin, L., 1951. Maxwell's demon cannot operate.J. appl. Phys. 22, 334–343.

    Google Scholar 

  • Chance, B., Higgins, J. J. &Garfinkel, D., 1962. Analogue and digital computer representations of biochemical processes.Fed. Proc. Fedn Am. Socs exp. Biol. 21, 75–86.

    Google Scholar 

  • Danziger, L. &Elmergreen, G. L., 1957. Mathematical models of endocrine systems.Bull. math. Biophys. 19, 9–18.

    Google Scholar 

  • Drischel, H., 1952/53. Bausteine einer dynamischen Theorie der vegetativen Regulation.Wiss. Z. Univ. Greifswald 2, 99–163.

    Google Scholar 

  • Eilenberg, S. &Maclane, S., 1945. General theory of natural equivalences.Trans. Am. math. Soc. 58, 231–294.

    Google Scholar 

  • Elsasser, W. M., 1958. The physical foundation of biology. Pergamon pr., London, 219 pp.

    Google Scholar 

  • Foster, C., Rapoport, A. &Trucco, E., 1957. Some unsolved problems in the theory of non-isolated systems.Gen. Syst. 2, 9–29.

    Google Scholar 

  • Garfinkel, D., 1963. Digital computer simulation of systems apparently compartmented at the cellular level.Ann. N.Y. Acad. Sci. 108, 293–304.

    Google Scholar 

  • Glansdorff, P. &Prigogine, I., 1954. Sur les propriétés différentielles de la production d'entropie.Physica,'s Grav. 20, 773–780.

    Google Scholar 

  • Goodwin, B. C., 1965. Oscillatory behavior in enzymatic control processes.Adv. Enzyme Regul. 3, 425–438.

    Google Scholar 

  • Hall, A. D. &Fagen, R. E., 1956. Definition of System.Gen. Syst. 1, 18–28.

    Google Scholar 

  • Hazelrig, J. B., 1964. The impact of high-speed automated computation on mathematical models.Proc. Staff Meet. Mayo Clin. 39, 841–848.

    Google Scholar 

  • Hearon, J. Z., 1953. The kinetics of linear systems with special reference to periodic reactions.Bull. math. Biophys. 15, 121–141.

    Google Scholar 

  • —— 1963. Theorems on linear systems.Ann. N.Y. Acad. Sci. 108, 36–68.

    Google Scholar 

  • Hess, B., Brand, K. &Pye, K., 1966. Continuous oscillations in a cell-free extract ofS. carlsbergensis.Biochem. biophys. Res. Commun. 23, 102–108.

    Google Scholar 

  • Higgins, J. J., 1963. Analysis of sequential reactions.Ann. N.Y. Acad. Sci. 108, 305–321.

    Google Scholar 

  • —— 1965. Dynamics and control in cellular reactions.In: Control of energy metabolism. Ed. by B. Chance, R. W. Estabrook & J. R. Williamson. Acad. pr., New York, 13–46.

    Google Scholar 

  • Hintikka, J., 1966. Kant vindicated.In: Deskription, Analytizität und Existenz. Hrsg. v. P. Weingartner. Pustet, München, 235–253.

    Google Scholar 

  • Kämmerer, W., 1966. Zum mathematischen Modell automatischer Systeme.Stud. Biophys. (im Druck)

  • Katchalsky, A. &Kedem, O., 1962. Thermodynamics of flow processes in biological systems.Biophys. J. 2, 53–78.

    Google Scholar 

  • Krüger, F., 1964. Neuere mathematische Formulierungen der biologischen Temperaturfunktion und des Wachstums.Helgoländer wiss. Meeresunters. 9, 108–124.

    Google Scholar 

  • Leinfellner, W., 1965. Struktur und Aufbau wissenschaftlicher Theorien. Physica Verl., Wien, Würzburg, 307 pp.

    Google Scholar 

  • Linschitz, H., 1953. Information and physical entropy.In: Information theory in biology. Ed. by H. Quastler. Urbana, Ill., Univ. pr., 14–15.

    Google Scholar 

  • Locker, A., 1961. Das Problem der Abhängigkeit des Stoffwechsels von der Körpergröße.Naturwissenschaften 48, 445–449.

    Google Scholar 

  • —— 1964. Reaktionen metabolisierender Systeme auf experimentelle Beeinflussung, Reiz und Schädigung.Helgoländer wiss. Meeresunters. 9, 38–107.

    Google Scholar 

  • -- 1966. Die Bedeutung der Begriffe Ganzheit, System und Modell für die quantitative Biologie.Intern. Z. Vitalst. (im Druck)

  • Lotka, A. J., 1910. Contribution to the theory of periodic reactions.J. phys. Chem. Ithaca 14, 271–275.

    Google Scholar 

  • Lutz, Th., 1963. Einige Gesichtspunkte zum Begriff der Struktur.Grundlagen-Stud. Kybernetik Geisteswiss. 4, 1–6.

    Google Scholar 

  • Margalef, D. R., 1958. Information theory in ecology.Gen. System 3, 36–71.

    Google Scholar 

  • Mesarovic, M. D., 1964. Foundations for a general systems theory.In: Views on general systems theory. Ed. by M. D. Mesarovic. Wiley & Sons, New York, 1–24.

    Google Scholar 

  • Morowitz, H. J., 1955. Some disorder-order considerations in living systems.Bull. math. Biophys. 17, 81–87.

    Google Scholar 

  • —— &Quastler, H., 1964. Passive stability in a metabolic network.J. theor. Biol. 7, 98–111.

    Google Scholar 

  • Prigogine, I. &Balescu, R., 1956. Phénomènes cycliques dans la thermodynamique des processus irréversibles.Bull. Acad. r. Belg. 42, 256–265.

    Google Scholar 

  • Ranke, O. F., 1960. Physiologie des Zentralnervensystems vom Standpunkt der Regelungslehre. Urban & Schwarzenberg, München, 133 pp.

    Google Scholar 

  • Rashevsky, N., 1954. Topology and life.Bull. math. Biophys. 16, 317–348.

    Google Scholar 

  • —— 1960. Mathematical biophysics. Dover publ., New York, vol. 1, 1–488.

    Google Scholar 

  • —— 1965. The representation of organisms in terms of predicates.Bull. math. Biophys. 27, 477–491.

    Google Scholar 

  • Rescigno, A. &Segre, G., 1961. The precursor-product-relationship.J. theoret. Biol. 1, 498–513.

    Google Scholar 

  • —— —— 1962. Analysis of multicompartmented biological systems.J. theoret. Biol. 3, 149–163.

    Google Scholar 

  • Rosen, R., 1958a. A relational theory of biological systems.Bull. math. Biophys. 20, 245–260.

    Google Scholar 

  • —— 1958b. The representation of biological systems from the standpoint of the theory of categories.Bull. math. Biophys. 20, 317–341.

    Google Scholar 

  • Schoenfeld, R. L., 1963. Linear network theory and tracer analysis.Ann. N. Y. Acad. Sci. 108, 69–91.

    Google Scholar 

  • Schramm, G., 1964. Der Informationsgehalt von Nukleinsäuren.Dt. med. Wschr. 89, 65–72.

    Google Scholar 

  • Sengupta, S. S. &Ackoff, R. L., 1965. Systems theory from an operations research point of view.Gen. Syst. 10, 43–48.

    Google Scholar 

  • Sheppard, C. W. &Householder, A. S., 1951. The mathematical basis of the interpretation of tracer experiments in closed steady-state systems.J. appl. Phys. 22, 510–520.

    Google Scholar 

  • Sugita, M., 1961. Functional analysis of chemical systems in vivo using a logical circuit equivalent.J. theoret. Biol. 1, 415–430.

    Google Scholar 

  • Szilard, L. (1929). Über die Entropieverminderung in einem thermodynamischen System bei Eingriff intelligenter Wesen.Z. Phys. 53, 840–856.

    Google Scholar 

  • Taylor, J. D. &Wiegand, R. G., 1962. The analog computer and plasma drug kinetics.Clin. Pharmac. Ther. 3, 464–472.

    Google Scholar 

  • Toda, M. &Shuford, E. H., 1965. Logic of systems: Introduction to a formal theory of structure.Gen. Syst. 10, 3–27.

    Google Scholar 

  • Trincher, K. S., 1965. Biology and information. Elements of biological thermodynamics. Consultants Bureau, New York, 93 pp.

    Google Scholar 

  • Valentinuzzi, M. &Valentinuzzi, M. E., 1962. Information content of chemical structures and some possible biological applications.Bull. math. Biophys. 24, 11–27.

    Google Scholar 

  • Walter, Ch., 1966. Oscillation in enzyme reactions.Nature 209, 404–405.

    Google Scholar 

  • Wiener, N., 1958. Mensch und Menschmaschine (The human use of human beings). A. d. Am. Ullstein, Frankfurt a. M., 187 pp.

    Google Scholar 

  • Zadeh, L. A., 1951. On stability of linear varying parameter systems.J. appl. Phys. 22, 402–405.

    Google Scholar 

  • Zemanek, H., Kretz, H. &Angyan, A. J., 1961. A model for neurophysiological functions.In: Information theory. Ed. by C. Cherry. Butterworth & Co., London, 270–284.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Herrn Prof. Dr.L. v. Bertalanffy, meinem hochverehrten Lehrer, zu seinem 65. Geburtstag gewidmet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Locker, A. Elemente einer systemtheoretischen Betrachtung des Stoffwechsels. Helgolander Wiss. Meeresunters 14, 4–24 (1966). https://doi.org/10.1007/BF01611609

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01611609