Skip to main content
  • General Implication Of Systems And Models For Metabolism
  • Published:

Biological and physical realizations of abstract metabolic models

Réalisations biologiques et physiques de modèles métaboliques abstraits

Extrait

Il est possible de s'approcher de l'étude des actions métaboliques en considérant de modèles mathématiques formels qui incorporent les éléments essentiels du métabolisme. On peut développer ces modèles et déduire ses conséquences. Afin d'appliquer les résultats de ces études directement à la biologie, il faut remonter, partant du modèle formel, aux éléments individuels qui le réalisent. Pour l'ordinaire la classe du ces éléments est plus grosse, c'est à dire, elle contient plusieurs éléments sans signification biologique. En relation avec la transition, à partir du modèle formel, à une réalisation biologiquement intéressante, il se fait surgir de certains problèmes difficiles. Nous discutons ces problèmes et donnons l'idée de quelques techniques permettant d'exécuter les transitions indiquées. Nous appliquons celles-ci aux questions des systèmes analogues et de la simulation du métabolisme dans des systèmes non-biologiques.

Summary

  1. 1.

    The application of general models to individual biological systems requires us to be able to pass from the abstract model to individual elements of the class of realizations of the model.

  2. 2.

    In order to do this, it is necessary to supplement the model by a variety of constraints.

  3. 3.

    It is argued that two kinds of constraints are sufficient for this purpose: (a) a constraint specifying a particular physical embodiment of some subsystem of the formal model, and (b) a constraint specifying the optimality of the total system with respect to a suitably chosen criterion of cost.

  4. 4.

    The employment of analogous systems, or simulation, to obtain structural information about a particular realization is briefly discussed.

Literature cited

  • Benzer, S., 1957. The elementary units of heredity.In: The chemical basis of heredity. Ed. by W. D. McElroy & B. Glass. Johns Hopkins Univ. pr., Baltimore, 70–93.

    Google Scholar 

  • Jacob, F. &Monod, J., 1961. Teleonomic mechanisms in cellular metabolism, growth and differentiation.Cold Spring Harb. Symp. quant. Biol. 26, 389–401.

    Google Scholar 

  • Landahl, H. D., 1941. Quoted fromRashevsky, N., 1958: 1, Chapt. 14 ff

  • McCulloch, W. S. &Pitts, W., 1943. Quoted fromRashevsky, N., 1958: 1, Chapt. 19.

  • Olson, H. F., 1958. Dynamical analogies. Van Nostrand, Princeton, N. J., 278 pp.

    Google Scholar 

  • Rashevsky, N., 1958. Mathematical biophysics. 3rd ed. Dover Publ., New York, Vol.2, 1–462.

    Google Scholar 

  • Rosen, R., 1962. Church's thesis and its relation to the concept of realizability in biology and physics.Bull. math. Biophys. 24, 375–393.

    Google Scholar 

  • —— 1963. Relational biology and bionics.IRE Trans. milit. Electron. 7, 160–162.

    Google Scholar 

  • —— 1966. Optimality principles in biology. Butterworths & Co., London (in press).

    Google Scholar 

  • Stark, L., 1959. Stability, oscillations and noise in the human pupil servomechanism.Proc. Inst. Radio Engrs 47, 1925–1939.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosen, R. Biological and physical realizations of abstract metabolic models. Helgolander Wiss. Meeresunters 14, 25–31 (1966). https://doi.org/10.1007/BF01611610

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01611610

Keywords