Skip to main content
  • Models Of Cell Metabolism; Its Regulation And Control
  • Published:

Kinetic theory and mathematical model of cell metabolism

Kinetische Theorie und mathematisches Modell des Zellstoffwechsels

Kurzfassung

Obwohl der Stoffwechsel eine physikalisch und chemische äußerst komplizierte Prozeßfolge ist, kann seine Kinetik durch ein hydrodynamisches Modell veranschaulicht werden, in welchem das Niveau der Flüssigkeit dem chemischen Potential entspricht. Die Funktionen sowohl des Intensitätsfaktors als auch des Drosselfaktors sind jedoch stark nicht-linear, so daß eine kontinuierliche Analyse, die auf Differentialgleichungen der Kinetik beruht, Schwierigkeiten bereiten. In die Differentialgeichungen der Kinetik, beispielsweise von mRNA oder Repressor, werden daher binäre Parameter eingeführt, da die entsprechenden molekularkinetischen Überlegungen sonst sehr komplizierte mathematische Modelle ergeben, die es erschweren, qualitative Angaben über das Regelungssystem zu machen; dafür gestattet aber die vorgeschlagene Methode nützliche Vereinfachungen. Zur Simulation wird ein System von Analogrechner und elektromechanischem Relaiskreislauf herangezogen. Liegt die Ausbeute der Rechenmaschine, etwa an Repressormenge, über oder unter einem bestimmten Schwellenwert, so wird ein Impuls durch den Schmitt-Kreislauf gegeben. Der Impuls wird dem Relaiskreislauf zugeführt, welcher als molekularer Automat angesehen werden kann und das kontinuierliche System wie eine Fabrik durch einen Computer reguliert. Durch entsprechende Vereinfachung des Kreislaufs und durch Vernachlässigung der Verzögerung, die durch Analogmaschine und Schmitt-Kreislauf entsteht, wird das schon früher mitgeteilte Modell erhalten.

Summary

  1. 1.

    A differential equation of the kinetics of metabolic systems is formulated

    $$\frac{{dn_i }}{{dt}} = \mathop \sum \limits_j J_{ji} - \mathop \sum \limits_k J_{ik} $$

    wheren i is the quantity of a metabolite in a comparment i,J ji the influx from j to i andJ ik the outflux from i to k.

  2. 2.

    The fluxesJ ji orJ ik can be described as the product of throttling factor × intensive factor. The thermodynamical nature of the intensive factor is considered and the idea of quasi-equilibrium introduced.

  3. 3.

    The notion of parametric action is outlined. Rate processes concerned with the flexibility of the throttling factor are considered as transmission of information; this facilitates an investigation of the parametric interaction or informational correlation in chemical reaction systems.

  4. 4.

    The flexibility of the throttling factor reveals that the equation of kinetics is non-linear. Any feedback system has to be represented by such non-linear equations.

  5. 5.

    There are some cases in which non-linear behaviour may be represented approximately by a step-function; therefore, finite theory may be useful in such systems.

  6. 6.

    Since the limit of applicability of the continuous analysis based on differential equations of kinetics is well appreciated, binary functions or parameters are introduced into the equation of kinetics in order to unify the two types of analysis, finite and continuous. A hybrid computing system is used for this purpose.

  7. 7.

    Kinetics of mRNA and repressor formation is especially considered and an appropriate hybrid system suggested. In simplifying this system the switching circuit model proposed previously is obtained.

  8. 8.

    A mathematical model of cell differentiation is proposed. A flip-flop circuit is assumed, composed of reactions at the genetic and other levels under the influence of inducible enzymes. The continuous kinetics in this model cell may function only under the control of such a molecular automaton.

  9. 9.

    A pattern of active (1) or inactive (0) states of DNA (101001 ...) may be superimposed upon the information at the genetic level. Cell differentiation is the most striking and permanently lasting variation of this pattern. In addition, temporal variations (repression and induction; open or closed states) which may be of physiological significance, are considered.

  10. 10.

    Energy for parametric action must be distinguished from energy for the response. The relation between entropy of activation and negative entropy of information, e. g. of DNA, is discussed.

  11. 11.

    In the appendices (I to III) thermodynamics of an open system are discussed; a thermodynamical function, such as a chemical potential in a dynamical system, is logically defined. Finally, the maximum principle and the importance of cybernetics are discussed.

Literature cited

  • Bellman, R., 1965. Mathematical problems arising in biomedical research.In: Digest of the 6th Intern. Conference on Medical Electronics and Biological Engineering, Japan. Soc. of Med. Electr. and Biol. Engng., Shinbashi, Minato-ku, Tokyo, 412–413.

    Google Scholar 

  • —— &Roth, R., 1964. On the identification of systems and the unscrambling of data: some problems suggested by neurophysiology.Proc. natn. Acad. Sci. U.S.A. 52, 1239–1240.

    Google Scholar 

  • Denbigh, K. G., 1952. Entropy creation in open reaction systems.Trans. Faraday Soc. 48, 389–394.

    Google Scholar 

  • Elsasser, W. M., 1958. The physical foundation of biology. Pergamon pr., London, 219 pp.

    Google Scholar 

  • Garfinkel, D., 1965. A simulation study of mammalian phosphofructokinase.Scient. Mem. Inf. Exchange Grp. 3, No.9, 1–8.

    Google Scholar 

  • Glasstone, S., Laidler, K. J. &Eyring, H., 1941. The theory of rate processes. McGraw-Hill, New York, 611 pp.

    Google Scholar 

  • Goodwin, B. C., 1963. Temporal organization in cells. Acad. pr., New York, 163 pp.

    Google Scholar 

  • Heinmets, F., 1964a. Analogue computer analysis of a model system for the induced enzyme synthesis.J. theor. Biol. 6, 60–70.

    Google Scholar 

  • —— 1964b. Elucidation of induction and repression mechanisms in enzyme synthesis by analysis of model system with the analog computer.In: Electronic aspects of biochemistry. Ed. by B. Pullman. Acad. pr., New York, 415–479.

    Google Scholar 

  • —— 1966. Cellular growth, injury and death. Mathematical formulation and analog computer analysis.Helgoländer wiss. Meeresunters. 14, 168–194.

    Google Scholar 

  • Hess, B. &Brand, K., 1966. Kontrollmechanismen der Glycolyse.Helgoländer wiss. Meeresuntersuchungen 14, 129–147.

    Google Scholar 

  • Hill, T. L., 1963. Thermodynamics of small systems. Benjamin, New York, pt1, 1–183.

    Google Scholar 

  • —— 1964. Thermodynamics of small systems. Benjamin, New York, pt2, 1–222.

    Google Scholar 

  • Horiuchi, T., 1961. A temperature sensitive regulatory system.J. molec. Biol. 3, 703–704.

    Google Scholar 

  • —— &Novick, A., 1961. A thermolabile repression system.Cold Spring Harb. Symp. quant. Biol. 26, 247–248.

    Google Scholar 

  • Lucas, H. C. (Ed.), 1962. The Cullowhee conference on training in biomathematics. Institute of Statistics of North Carolina State College, Raleigh, N. C., 390 pp.

    Google Scholar 

  • Monod, J. &Jacob, F., 1961. General conclusion: Teleonomic mechanisms in cellular metabolism, growth and differentiation.Cold Spring Harb. Symp. quant. Biol. 26, 389–401.

    Google Scholar 

  • Ohki, S., 1965. Rectification by a double membrane.J. phys. Soc. Japan 20, 1674–1685.

    Google Scholar 

  • Pardee, A. B., Jacob, F. &Monod, J., 1959. The genetic control and cytoplasmic expression of inducibility in the synthesis of β-galactosidase byE. coli.J. molec. Biol. 1, 165–178.

    Google Scholar 

  • Prigogine, I. &Balescu, R., 1955. Sur les propriétés différentielles de la production d'entropie. 2.Bull. Acad. r. Belg. Cl. Sci. (Série 5)41, 917–928.

    Google Scholar 

  • Stahl, W. R., 1965a. Algorithmically unsolvable problems for cell automata.J. theor. Biol. 8, 371–393.

    Google Scholar 

  • —— 1965b. Self-reproducing automata.Perspect. Biol. Med. 8, 373–391.

    Google Scholar 

  • Sugita, M., 1951. Thermodynamical method in biology.Ann. Hitotsubashi Univ. (Suppl.)1, 9–21.

    Google Scholar 

  • —— 1953. Thermodynamical analysis of life. 2. The maximum principle of transient phenomena.J. phys. Soc. Japan 8, 704–709.

    Google Scholar 

  • —— 1954. Mathematical analysis of the metabolism and analogy of economics.Ann. Hitotsubashi Univ. 4, 163–182.

    Google Scholar 

  • —— 1955. The metabolic turnover and the maintenance of the low entropy level.J. phys. Soc. Japan 10, 316–317.

    Google Scholar 

  • —— 1957a. Membrane equilibrium and quasi-equilibrium (in Japanese).Kagaku (Sci.)27, 416.

    Google Scholar 

  • —— 1957b. Thermodynamics and molecular statistics (in Japanese). Nankodo, Tokyo, 248 pp.

    Google Scholar 

  • —— 1958. Informational correlation in irreversible processes and the application of this idea to biology (in Japanese).Bull. Kobayasi Inst. phys. Res. 8, 159–173.

    Google Scholar 

  • —— 1961a. Functional analysis of chemical systems in vivo using a logical circuit equivalent.J. theor. Biol. 1, 415–430.

    Google Scholar 

  • —— 1961b. Feedback mechanism of chemical system from the viewpoint of information technology.Prog. theor. Phys. (Suppl.)17, 143–161.

    Google Scholar 

  • —— 1963. Functional analysis. 2. The idea of molecular automaton.J. theor. Biol. 4, 179–192.

    Google Scholar 

  • —— 1965a. Kinetic theory and mathematical model of cellular metabolism. (Preliminary report.)A. Rep. Res. Grp Biophys. Japan. 4, 43–59 (Stereotyped).

    Google Scholar 

  • —— 1965b. Fundamental idea of cybernetics: The idea of pure cybernetics and of cybernetic sciences.Hitotsubashi J. Arts Sci. 6, 45–73.

    Google Scholar 

  • —— 1966a. Hybridization of finite and continuous analysis.A. Rep. Res. Grp Biophys Japan 5, 17–29.

    Google Scholar 

  • -- 1966b. Functional analysis. 4. Simulation of cellular control systems unsing hybrid computing system.J. theor. Biol. (in press).

  • —— &Fukuda, N., 1963. Functional analysis. 3. Analysis using a digital circuit combined with an analogue computer.J. theor. Biol. 5, 412–425.

    Google Scholar 

  • Volmer, M., 1938. Kinetik der Phasenbildung. Springer, Berlin, 220 pp.

    Google Scholar 

  • Wiener, N. &Schadé, J. P. (Eds), 1964. Progress in biocybernetics. Elsevier, Amsterdam,1, 1–204.

    Google Scholar 

  • —— 1965. Progress in biocybernetics. Elsevier, Amsterdam,2, 1–273.

    Google Scholar 

  • Yčas, M., Sugita, M. &Bensam, A., 1965. A model of cell size regulation.J. theor. Biol. 9, 444–470.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugita, M. Kinetic theory and mathematical model of cell metabolism. Helgolander Wiss. Meeresunters 14, 78–109 (1966). https://doi.org/10.1007/BF01611615

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01611615

Keywords