Skip to main content
  • Models Of Cell Metabolism; Its Regulation And Control
  • Published:

Kontrollmechanismen der Glycolyse

Control mechanisms of glycolysis

Abstract

Control mechanisms of enzymic reactions are generally based on interactions between activators, inhibitors, substrates and products with enzyme proteins or on induction and repression of enzyme synthesis. All main types of control can be recognized in glycolysis. They are the basis of the network which controls the over-all glycolytic function and operates according to the feed-back principle. — Enzyme profiles may not be used for a functional definition of the metabolic state. Enzyme activities are governed by a variety of control mechanisms, which can best be recognized by steady-state and transient state analysis of metabolites and by an analysis of the system's response in titration experiments with pure enzymes under conditions whereby the system displays oscillatory behaviour of its over-all flux. The important parameter for the definition of the metabolic state is the net-flux through the system, since this parameter, along with the steady-state levels of the meabolites, gives the steady-state flux pattern, reveals the kinetic state of enzymic reactions and points to control points of metabolism. Continuous glycolytic oscillations in a cell-free extract ofSaccharomyces carlsbergensis have been observed over a period of 22 hours with a constant frequency of 0.17 min−1 and a rate of 7.2 nMol ethanol per mg protein per min. Titration of such an extract by pure yeast enzymes reveals the gain (FDP, ADP) and damping components (ATP), which are fed back to the enzymes PFK and PK, respectively, PFK, PGK and PK operating as the control units. On the basis of the titration data as well as metabolite and enzyme activity phase relationship, the mechanism of this oscillation can be understood as a crossed feed-back interaction. Furthermore, it is discussed as the biochemical model of a physiological clock mechanism.

Zusammenfassung

  1. 1.

    Die Mechanismen der Kontrolle enzymatischer Reaktionssequenzen lassen sich allgemein auf Wechselwirkungen von Aktivatoren, Inhibitoren, Substraten und Produkten mit Enzymproteinen sowie auf Induktion oder Repression der Enzymsynthesen zurückführen. Alle Kontrolltypen werden im Verlaufe der Glycolyse beobachtet. Sie sind die Grundlage des Kontrollnetzes, das den Ablauf der Glycolyse bestimmt und nach dem Rückkopplungsprinzip operiert.

  2. 2.

    Das stationäre Verhalten der Fließgleichgewichte der Glycolyse kann durch Bestimmung von Netto-Fluß und stationären Intermediatkonzentrationen adequat in Form der Metabolit- und Flußprofile für den Hin- und Rückfluß jeder enzymatischen Reaktion beschrieben werden. Derartige Profile kennzeichnen den Kontrolltyp jeder enzymatischen Reaktion. Metabolit- und Flußprofile können als Grundlage mathematischer Modelle der Glycolyse benutzt werden. Das Verhalten dieser Modelle unter stationären und transienten Bedingungen steht in Übereinstimmung mit den experimentellen Beobachtungen.

  3. 3.

    Die Untersuchung von Übergangszuständen ergänzt die Analyse stationärer Zustände. Sie führt unabhängig zur Aufdeckung von Kontrollpunkten der glycolytischen Sequenz und erfaßt allgemein den Bereich sowie die Güte biochemischer Kontrollmechanismen.

  4. 4.

    Der Mechanismus der stationär oder transient oszillierenden Glycolyse konnte im zellfreien Extrakt durch Metabolitanalysen, durch Titrationen mit Intermediaten und Enzymen weitgehend aufgeklärt werden. Er beruht auf der spezifischen Kontrolle der Phosphotransferasen durch gekreuzte Rückkopplung und stellt das biochemische Modell zellulärer Uhrenmechanismen dar.

Zitierte literatur

  • Betz, A. &Chance, B., 1965. Influence of inhibitors and temperature on the oscillation of reduced pyridine nucleotides in yeast cells.Archs Biochem. Biophys. 109, 579–584.

    Google Scholar 

  • —— 1965. Phase relationship of glycolytic intermediates in yeast cells with oscillatory metabolic control.Archs Biochem. Biophys. 109, 585–594.

    Google Scholar 

  • Bücher, T., 1961. Intermediärstoffwechsel der Glucose unter zellphysiologischem Aspekt.In: Die endokrine Behandlung des Mamma- und Prostatacarcinoms. — Endokrine Regulationen des Kohenhydratstoffwechsels. 7. Symposium d. Dt. Ges. f. Endokrinologie, Homburg, Saar, 1960. Hrsg. von H. Nowakowski. Springer, Berlin, 129–134.

    Google Scholar 

  • Chance, B., 1953–54. Enzymes in action in living cells: the steady-state of reduced pyridine nucleotides.In: The Harvey lectures. Acad. pr., New York, Ser.49, 145–175.

    Google Scholar 

  • —— 1961. Control characteristics of enzyme systems.Cold Spring Harb. Symp. quant. Biol. 26, 289–299.

    Google Scholar 

  • -- 1962. Symposium Löwen, Juni 1962.

  • —— &Hess, B., 1956. On the control of metabolism in ascites tumor cell suspensions.Ann. N. Y. Acad. Sci. 63, 1008–1016.

    Google Scholar 

  • —— &Hess, B., 1959. Spectroscopic evidence of metabolic control.Science, N. Y. 129, 700–708.

    Google Scholar 

  • —— &Hess, B., 1955. The respiratory chain as an indicator of intracellular ADP levels in muscle, yeast and tumor cells.J. cell. comp. Physiol. 46, 358.

    Google Scholar 

  • —— &Gosh, A., 1964. Damped sinusoidal oscillations of cytoplasmic reduced pyridine nucleotides in yeast cells.Proc. natn. Acad. Sci. U.S.A. 51, 1244–1251.

    Google Scholar 

  • —— &Elsaesser, S., 1964. Control of the waveform of oscillations of the reduced pyridine nucleotide level in a cell-free extract.Proc. natn. Acad. Sci. U.S.A. 52, 337–341.

    Google Scholar 

  • Crabtree, H. G., 1929. Observations on the carbohydrate metabolism of tumors.Biochem. J. 23, 536.

    Google Scholar 

  • Duysens, L. N. M. &Amesz, J., 1957. Fluorescence spectrophotometry of reduced pyridine nucleotide in intact cells in the near ultraviolet and visible light.Biochim. biophys. Acta 24, 19–26.

    Google Scholar 

  • Eigen, M. &Hammes, G. G., 1963. Elementary steps in enzyme reactions.Adv. Enzymol. 25, 1–38.

    Google Scholar 

  • Garfinkel, D. &Hess, B., 1964. Metabolic control mechanism. 7. A detailed computer model of the glycolytic pathway in ascites cells.J. biol. Chem. 239, 968–971.

    Google Scholar 

  • Garland, P. B., Randle, P. J. &Newsholme, E. A., 1963. Citrate as an intermediary in the inhibition of phosphofructokinase in rat heart muscle by fatty acids, ketone bodies, pyruvate, diabetes and starvation.Nature 200, 169–170.

    Google Scholar 

  • Harden, A. &Young, W. I., 1905. The influence of phosphate on the fermentation of glucose by yeast-juice.J. chem. Soc. 87, 189.

    Google Scholar 

  • Hess, B., 1962. Control of metabolic rates.J. gen. Physiol. 45, 603 A.

    Google Scholar 

  • —— 1963. Control of metabolic rates: Regulation of metabolism.In: Control mechanisms in respiration and fermentation. 8th Annual symposium of the Soc. of Gen. Physiol., Woods Hole, Mass., 1961. Ed. by B. E. Wright. Ronald, New York, 333.

    Google Scholar 

  • —— 1963. Fließgleichgewicht der Zellen.Dt. med. Wschr. 88, 668–676.

    Google Scholar 

  • —— 1963. Koordination von Atmung und Glykolyse.In: Funktionelle und morphologische Organisation der Zelle. Wiss. Konf. d. Ges. Dt. Naturf. u. Ärzte, Rottach-Egern, 1962. Hrsg. von P. Karlson. Springer, Berlin, 163–185.

    Google Scholar 

  • —— 1963. Reactions of respiratory components in intact cells.In: Intracellular respiration: Phosphorylating and non-phosphorylating oxidation reactions. Ed. by E. C. Slater. Oxford, Pergamon pr. (Proc. 5th Int. Congr. Biochem., Moscow 5, 313.)

    Google Scholar 

  • —— &Brand, K., 1965. Enzyme and metabolite profiles.In: Control of energy metabolism. Ed. by B. Chance. Acad. pr., New York, 111–122.

    Google Scholar 

  • -- -- 1965. Mechanism of glycolytic oscillation.In: Abstracts of papers presented at the 150th Meeting of the Am. Chem. Soc.27 c.

  • -- -- 1966. Continuous glycolytic oscillations in extracts ofS. carlsbergensis. Fedn Proc. Fedn Am. Socs exp. Biol. (Abstr.)

  • —— —— &Cassuto, Y., 1965. Enzyme and metabolite pattern in the oscillating cell-free extract ofS. carlsbergensis.Fedn Proc. Fedn Am. Socs exp. Biol. 24, 537.

    Google Scholar 

  • —— &Chance, B., 1959. Über zelluläre Regulationsmechanismen und ihr mathematisches Modell.Naturwissenschaften 46, 248–257.

    Google Scholar 

  • —— —— 1961. Metabolic control mechanism. 6. Chemical events after glucose addition to ascites tumor cells.J. biol. Chem. 236, 239–246.

    Google Scholar 

  • —— —— &Betz, A., 1964. Isolierung eines oszillierenden Systems ausS. carlsbergensis.Ber. Bunsenges. physikal. Chem. 68, 768.

    Google Scholar 

  • --Pye, K. &Brand, K., 1965. Unpublizierte Untersuchungen.

  • Higgins, J., 1964. A chemical mechanism for oscillation of glycolytic intermediates in yeast cells.Proc. natn. Acad. Sci. U.S.A. 51, 989–994.

    Google Scholar 

  • Holzer, H., 1952. München, Naturwiss. Hab.-Schr. v. 1952.

  • —— &Freytag-Hilf, R., 1959. Zusammenwirken der Gärungsenzyme beim anaeroben und aeroben Glucoseumsatz in Hefezellen.Hoppe-Seyler's Z. physiol. Chem. 316, 7–30.

    Google Scholar 

  • Hommes, S. A., 1964. Oscillatory reductions of pyridine nucleotides during anaerobic glycolysis in brewers yeast.Archs Biochem. Biophys. 108, 36–46.

    Google Scholar 

  • Johnson, M. J., 1941. The role of aerobic phosphorylation in the Pasteureffect.Science, N. Y. 94, 200–202.

    Google Scholar 

  • Lardy, H. &Parks, R. E., 1956. Influence of ATP concentration on rates of some phosphorylation reactions.In: Enzymes: Units of biological structure and function. Ed. by O. H. Gaebler. Acad. pr., New York, 584–587.

    Google Scholar 

  • Lynen, F., 1941. Über den aeroben Phosphatbedarf der Hefe.Justus Liebigs Annln Chem. 546, 120–141.

    Google Scholar 

  • —— &Schuegraf, A., 1959.In: The Regulation of cell metabolism. Ed. by G. E. W. Wolstenholme & C. M. O'Connor. Little, Brown & Co., Boston, Mass., 256. (CIBA Foundation Symposium.)

    Google Scholar 

  • Matthäi, J. M., 1964. Persönliche Mitteilung.

  • Meyerhof, O., 1920. Über die Energieumwandlungen im Muskel.Pflügers Arch. ges. Physiol. 182, 284–317.

    Google Scholar 

  • Monod, J., Changeux, J.-P. &Jacobs, F., 1963. Allosteric proteins and cellular control systems.J. molec. Biol. 6, 306–329.

    Google Scholar 

  • Parmiggianni, A., Love, D. S. &Krebs, E. G., 1964. Purification and properties of rabbit muscle phosphofructokinase.Fedn Proc. Fedn Am. Socs exp. Biol. 23, 533, 2591.

    Google Scholar 

  • Pasteur, L., 1876. Etudes sur la bière.Bull. Soc. chim. Paris, 240.

  • Pette, D., 1965. Plan und Muster im zellulären Stoffwechsel.Naturwissenschaften 52, 597–616.

    Google Scholar 

  • Pye, K., 1965. Unveröffentl. Befunde.

  • Williamson, J. R., Jones, W. A. &Azzone, G. F., 1964. Metabolic control in perfused rat heart during fluoroacetate poisoning.Biochem. biophys. Res. Commun. 17, 696–702.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hess, B., Brand, K. Kontrollmechanismen der Glycolyse. Helgolander Wiss. Meeresunters 14, 129–147 (1966). https://doi.org/10.1007/BF01611617

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01611617