Skip to main content
  • Models And Experimental Results On Stimulation And Injury
  • Published:

Kybernetische Aspekte der Strahlenschädigung

Cybernetic aspects of radiation damage

Abstract

Starting with experimentally established radiobiological facts concerning cellular effects of ionizing radiation, the differences between single cells and tissues are discussed. A new classification for “size”-controlled tissues is proposed, and the relevant mathematical formulations are outlined. It is suggested that the different sensitivities of tissues against ionizing radiation may be explained on the basis of differently operating control mechanisms. As examples, root meristems, intestinal epithelium and blood forming organs are described in more detail.

Zusammenfassung

  1. 1.

    Ausgehend von grundlegenden experimentellen Fakten der Strahlenbiologie werden die Unterschiede zwischen Einzelzellen und Geweben behandelt, wobei vor allem auf Regelungsvorgänge, die auf die Konstanthaltung der Zellzahl hinwirken, eingegangen wird.

  2. 2.

    Es wird ein allgemeines Schema für Einteilung von Zellpopulationen vorgeschlagen, zu welchem als Klassifizierungsmerkmal die Art und Weise homöostatischer Regelungen der Zellzahl herangezogen wird. Die Einwirkung ionisierender Strahlung auf diese Modellsysteme wird diskutiert.

  3. 3.

    Mit Hilfe verschiedener Annahmen wird versucht, die unterschiedliche Strahlenempfindlichkeit verschiedener Organe zu deuten.

Zitierte literatur

  • Alper, T., Gillies, N. E. &Elkind, M. M., 1960. The sigmoidal curve in radiobiology.Nature 186, 1072–1063.

    Google Scholar 

  • Bacq, Z. M. &Alexander, P., 1961. Fundamentals of radiobiology. Pergamon pr., Oxford, 555 pp.

    Google Scholar 

  • Bender, M. A. &Gooch, P. C., 1962. The kinetics of X-ray survival curves of mammalian cells in vitro.Int. J. Radiat. Biol. 5, 133–145.

    Google Scholar 

  • Bergonié, J. &Tribondeau, L., 1906. Interprétations de quelques resultats de la radiothérapie et essai de fixation d'une technique rationelle.C. r. hebd. Séanc. Acad. Sci., Paris 143, 983–985.

    Google Scholar 

  • Berry, R. J. &Cohen, A. B., 1962. Some observations on the reproductive capacity of mammalian cells exposed in vivo to gamma-radiation at low dose-rates.Br. J. Radiol. 37, 489–491.

    Google Scholar 

  • Brüggemann, J. &Giesecke, D., 1964. Untersuchungen über das Wachstum und die Vermehrung vonStreptococcus bovis bei fortlaufender Röntgenbestrahlung.Zentbl. Bakt. ParasitKde 192, 39–53.

    Google Scholar 

  • Bullough, W. S., 1964. Growth regulation by tissue specific factors, or chalones.In: Cellular control mechanisms and cancer. Ed. by P. Emmelot & O. Mühlbock. Amsterdam, Elsevier, 124–145.

    Google Scholar 

  • —— &Rytömaa, T., 1965. Mitotic homeostasis.Nature 205, 573–578.

    Google Scholar 

  • Clowes, F. A. L., 1963. The quiescent centre in meristems and its behavior after irradiation.Brookhaven Symp. Biol. 16, 46–56.

    Google Scholar 

  • —— &Hall, E. J., 1963. The quiescent centre in root meristems ofVicia faba and its behaviour after acute X-irradiation and chronic gamma-irradiation.Radiat. Bot. 3, 45–53.

    Google Scholar 

  • Cudkowicz, G., Upton, A. C., Smith, L. H., Gosslee, D. G. &Hughes, W. L., 1964. An approach to the characterization of stem cells in mouse bone marrow.Ann. N. Y. Acad. Sci. 114, 571–582.

    Google Scholar 

  • Elkind, M. M., Han, A. &Volz, K. W., 1963. Radiation response of mammalian cells grown in culture. 4. Dose dependence of division delay and post-irradiation growth of surviving and non-surviving Chinese hamster cells.J. natn. Cancer Inst. 30, 705–721.

    Google Scholar 

  • —— &Sutton, H., 1959. X-ray damage and recovery in mammalian cells in culture.Nature 184, 1293–1295.

    Google Scholar 

  • —— —— 1960. Radiation response of mammalian cells in culture. 1. Repair of X-ray damage in surviving Chinese hamster cells.Radiat. Res. 13, 556–593.

    Google Scholar 

  • Evans, H. J., Neary, G. J. &Tonkinson, S. M., 1957. The use of colchicine as an indicator of mitotic rate in broad bean root meristems.J. Genet. 55, 487–502.

    Google Scholar 

  • Filmanowicz, E. &Gurney, G. W., 1961. Studies on erythropoiesis. 16. Response to a single dose of erythropoietin in polycythemic mouse.J. Lab. clin. Med. 57, 65–72.

    Google Scholar 

  • Fliedner, T. M. &Stodtmeister, R., 1962. Experimentelle und klinische Strahlenhämatologie. Lehmann, München, 80 pp.

    Google Scholar 

  • Fry, R. J. M., Lesher, S., Kisieleski, W. E. &Sacher, G., 1963. Cell proliferation in the small intestine.In: Cell proliferation. Ed. by L. F. Lamerton & R. J. M. Fry. Blackwell, Oxford, 213–233.

    Google Scholar 

  • —— —— &Staffeldt, E., 1963. The generation cycle of duodenal crypt cells of mice exposed to 220 R of Co-60 gamma-irradiation per day.Radiat. Res. 19, 628–635.

    Google Scholar 

  • Gelfant, S., 1963. A new theory of cell division.In: Cell growth and cell division. Ed. by R. J. C. Harris. Acad. pr., New York, 229–259.(Symp. int. Soc. Cell Biol. 2.)

    Google Scholar 

  • Gerber, G., 1957. Ganzkörper und Teilkörperbestrahlung.In: Wissenschaftliche Grundlagen des Strahlenschutzes. Hrsg. von B. Rajewsky. G. Braun, Karlsruhe, 149–162.

  • Gurney, C. W., 1963. Effect of radiation on the mouse stem cell compartment in vivo.Perspect. Biol. Med. 6, 233–245.

    Google Scholar 

  • Hall, E. J. &Bedford, J. S., 1964. Dose rate: its effect on the survival of HeLa cells irradiated with gamma-rays.Radiat. Res. 22, 305–315.

    Google Scholar 

  • Hodgson, G. S., 1962. Erythrozyte Fe-59 uptake as a function of bone marrow dose injected in lethally irradiated mice.Blood 19, 460–467.

    Google Scholar 

  • Howard, A. &Pelc, S. R., 1953. Synthesis of DNA in normal and irradiated cells and its relation to chromosome breakage.Heredity (Suppl.)6, 261–274.

    Google Scholar 

  • Hyodo, Y., 1965. Effects of X-irradiation on the intestinal epithelium of the goldfish,Carassius auratos. 2. Influence of temperature on the development of histopathological changes in the intestine.Radiat. Res. 24, 133–141.

    Google Scholar 

  • Kiefer, J., 1966a. Radiation effects on barley roots. 1. Continuous exposure.Int. J. Radiat. Biol. 10, 379–390.

    Google Scholar 

  • -- 1966b. Radiation effects on barley roots. 2. Single and fractionated exposure.Int. J. Radiat. Biol. (in press).

  • -- 1966c. A macroscopic method for the determination of cell cycle times. (In Vorbereitung)

  • Lajtha, L. G., 1962. Stem cell kinetics and erythropoietin.In: Erythropoiesis. Ed. by L. O. Jacobson & M. Doyle. Grune & Stratton, London, 140–150.

    Google Scholar 

  • —— &Oliver, R., 1962. Cell population kinetics following different regimes of irradiation.Br. J. Radiol. 35, 131–140.

    Google Scholar 

  • —— —— &Gurney, 1962. Kinetic model of a bone-marrow stem cell population.Br. J. Haemat. 8, 442–460.

    Google Scholar 

  • Lamerton, L. &Lord, B. I., 1964. Studies of cell proliferation under continuous irradiation.Natn. Cancer Inst. Monogr. 14, 185–197.

    Google Scholar 

  • —— &Adams, A., 1960. Effects of protracted irradiation on the blood forming organs of the rat. 1. Continuous exposure.Br. J. Radiol. 33, 287–301.

    Google Scholar 

  • Leblond, C. P. &Walker, B. E., 1956. Renewal of cell populations.Physiol. Rev. 36, 255–276.

    Google Scholar 

  • Lord, B. I., 1964. The effects of continuous irradiation on cell proliferation in rat bone marrow.Br. J. Haemat. 10, 496–507.

    Google Scholar 

  • Maurer, W., Pilgrim, C., Wegener, K., Hollweg, S. &Lennartz, J., 1965. Messung der Dauer der DNS-Verdopplungszeit und der Generationszeit bei verschiedenen Zellarten von Maus und Ratte durch Doppelmarkierung mit H-3 und C-14-Thymidin.Strahlentherapie 60 (Sonderbd), 96–107.

    Google Scholar 

  • Novick, A. &Szilard, L., 1950. Description of the chemostat.Science, N. Y. 112, 715.

    Google Scholar 

  • Oliver, R., 1964. A comparison of the effects of acute and protracted gamma-irradiation on the growth of seedlings ofVicia faba. 2. Theoretical calculations.Int. J. Radiat. Biol. 8, 475–488.

    Google Scholar 

  • Patt, H. M. &Maloney, M. A., 1963. An evaluation of granulocytopoiesis.In: Cell proliferation. Ed. by L. F. Lamerton & R. J. M. Fry. Blackwell, Oxford, 157–171.

    Google Scholar 

  • Porter, E. H., 1964. Electronic computers and survival curves.Br. J. Radiol. 37, 610–615.

    Google Scholar 

  • Puck, T. T., 1959. Quantitative studies of mammalian cells in vitro.Rev. mod. Phys. 31, 433–448.

    Google Scholar 

  • Quastler, H., Bensted, J. P. M., Lamerton, L. F. &Simpson, S. M., 1959. Adaptation to continuous irradiation: observations on the rat intestine.Br. J. Radiol. 43, 501–512.

    Google Scholar 

  • Rajewsky, B., Aurand, K. &Heuss, O., 1953. Weitere Untersuchungen zum Problem der Bestrahlung der weißen Maus mit hohen Dosen von Röntgenstrahlen.Z. Naturf. 8b, 524–526.

    Google Scholar 

  • Rausch, L., 1965. Schnell ablaufende Erholungsvorgänge in der Haut nach Röntgenbestrahlung.Strahlentherapie 127, 393–404.

    Google Scholar 

  • Rubin, B. A., 1954. Growth and mutation of bacteria during continuous irradiation.J. Bact. 67, 361–368.

    Google Scholar 

  • Shermann, F. G., Quastler, H. &Wimber, D. R., 1961. Cell population kinetics in the ear epidermis of mice.Expl Cell Res. 25, 114–119.

    Google Scholar 

  • Spoerl, E., Loveless, L. E., Weisman, T. H. &Balske, R. J., 1954. Studies on cell division. 2. X-radiation as a division inhibiting agent.J. Bact. 67, 394–401.

    Google Scholar 

  • Stapleton, G. E., 1955. Variations in the sensitivity ofE. coli to ionizing radiation during the growth cycle.J. Bact. 70, 357–362.

    Google Scholar 

  • Till, J. E. &McCulloch, E. A., 1961. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells.Radiat. Res. 14, 213–222.

    Google Scholar 

  • Van't Hof, J. &Sparrow, A. H., 1963a. The effect of mitotic cycle duration on chromosome breakage in meristematic cells ofPisum sativum.Proc. natn. Acad. Sci. U. S. A. 50, 855–860.

    Google Scholar 

  • —— —— 1963b. Growth inhibition, mitotic cycle time and cell number in chronically irradiated root meristems ofPisum.Radiat. Bot. 3, 239–247.

    Google Scholar 

  • —— &Colon, A., 1960. Studies on the control of mitotic activity. The use of colchicine in the tagging of a synchronous populations of cells in the meristem ofPisum sativum.Chromosoma 11, 313–321.

    Google Scholar 

  • —— &Ying, H. K., 1964. Simultaneous marking of cells in two different segments of the mitotic cycle.Nature 202, 981–983.

    Google Scholar 

  • Welch, G. P., 1957. Effects of chronic exposure to X-rays on a steady rate population (ofSaccharomyces cerevisiae). Thesis, Univ. of California, Berkeley.

    Google Scholar 

  • Wimber, D. R. &Lamerton, L. F., 1963. Cell population studies of continuously irradiated rats.Radiat. Res. 18, 137–146.

    Google Scholar 

  • —— ——, 1965. Cell cycle of mouse embryonic tissue under continuously gamma-irradiation.Nature 207, 432–433.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiefer, J. Kybernetische Aspekte der Strahlenschädigung. Helgolander Wiss. Meeresunters 14, 195–212 (1966). https://doi.org/10.1007/BF01611620

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01611620