Skip to main content
  • Adaptation And Quantitative Ecology (Poikilotherms)
  • Published:

Systemic versus cellular acclimation to temperature by poikilotherms

Systemische versus zelluläre Temperaturakklimation bei Poikilothermen

Kurzfassung

Die Bildung nervöser, hormonaler und zirkulatorischer Systeme hat im Verlauf der Evolution durch die Entwicklung homöostatischer Feed-back-Systeme zu thermischer Unabhängigkeit vom Klima (Poikilothermie) geführt. Es lassen sich zwei Arten der Temperaturkompensation unterscheiden, die vonPrecht Leistungs- und Resistenzadaptation (Thermostabilität nachUshakov) genannt werden. Bei Betrachtung des intraspezifischen Niveaus dieser Adaptationen ergeben sich mehrere ungelöste Fragen. Diese werden anhand von Vorstellungen, denen eigene Arbeiten an eurythermen Süßwasserfischen(Lepomis gibbosus, Carassius carassius) zugrunde liegen, erörtert: (1) Die genetische Basis der Leistungs- und Resistenzadaptation beruht teilweise auf unterschiedlichen Selektionsvorgängen. (2) Den Akklimationsunterschieden, die hinsichtlich der Letaltemperaturen isolierter Gewebe und Organe gefunden werden, kann oft keine ökologische Bedeutung zugeordnet werden im Gegensatz zu den entsprechenden Verhältnissen im Ganztier. Der letztgenannte Gesichtspunkt basiert auch aufUshakovs Studien sowie den Experimenten vonBaslow &Nigrelli, nach denen die Temperaturgrenzen der Cholinesterase-Aktivität des Gehirns vonFundulus teilweise homöostatische Regulationen der Leistungsadaptation widerspiegeln. Meines Erachtens erfordert eine Beantwortung dieser Fragen die Erfassung des relativen Ausmaßes systemischer Wechselwirkungen bei verschiedenen größeren Tiergruppen und eine Untersuchung der Adaptationseigenschaften verschiedener Zelltypen lebender Tiere, in welchen die zellulären Aktivitäten systemischen Wechselwirkungen unterworfen sind.

Summary

  1. 1.

    This discussion is based upon the assumption that the invention of multicellularity and the subsequent elaboration of nervous, hormonal and circulatory systems has led to an increasing degree of thermal independence from climate for poikilotherms by the evolution of homeostatic feedback systems.

  2. 2.

    Systemic dominance in homeostasis has been considered in relation to metabolic compensations in the respiration of the sunfish,Lepomis gibbosus, the crucian carp,Carassius carassius, and selected tissues (brain, gill, muscle) following adaptation to various temperatures and photoperiods. Uncoupled respiration has also been examined in sunfish brain and gill tissues following treatment with 2, 4-dinitrophenol. A poor type 3 trend (statistically unsupported) was found to be upset by uncoupling and was followed by a probable type 5 response.

  3. 3.

    Comparisons were made (at 20° C) between day and night respiration rates of crucian carp acclimated to 5°, 12° and 20° C. These suggest that the inverse compensation of the fish (type 5) is a behavioral adaptation to special winter conditions, perhaps hibernation.

  4. 4.

    Some of the problems concerned with deriving ecological meaning from experiments on resistance and capacity adaptations in isolated cells and tissues have been discussed. The suggestion is made that means be developed to expand studies in which adaptation characteristics of cell types can be examined within living animals.

Literature cited

  • Baslow, M. H. &Nigrelli, R. F., 1964. The effect of thermal acclimation on brain cholinesterase activity of the killifish,Fundulus heteroclitus.Zoologica 49, 41–51.

    Google Scholar 

  • Blažka, P., 1958. The anaerobic metabolism of fish.Physiol. Zool. 31, 117–128.

    Google Scholar 

  • Brett, J. R., 1955. Some principles in the thermal requirements of fishes.Q. Rev. Biol. 31, 75–87.

    Google Scholar 

  • Bullock, T. H., 1955. Compensation for temperature in the metabolism and activity of poikilotherms.Biol. Rev. 30, 311–342.

    Google Scholar 

  • Ekberg, D. R., 1958. Respiration in tissues of goldfish adapted to high and low temperatures.Biol. Bull. mar. biol. Lab., Woods Hole 114, 308–316.

    Google Scholar 

  • Evans, R. M., Purdie, F. C. &Hickman, C. P., Jr., 1962. The effect of temperature and photoperiod on the respiratory metabolism of rainbow trout(Salmo gairdneri).Can. J. Zool. 40, 107–118.

    Google Scholar 

  • Fry, F. E. J. &Hart, J. S., 1948. The relation of temperature to oxygen consumption in the goldfish.Biol. Bull. mar. biol. Lab., Woods Hole 94, 66–77.

    Google Scholar 

  • Freeman, J. A., 1950. Oxygen consumption, brain metabolism and respiratory movements of goldfish during temperature acclimation.Biol. Bull. mar. biol. Lab., Woods Hole 99, 416–424.

    Google Scholar 

  • Krüger, G., 1962. Über die Temperaturadaptation des Bitterlings (Rhodeus amarus Bloch).Z. wiss. Zool. 167, 87–104.

    Google Scholar 

  • Precht, H., 1958. Concepts of the temperature adaptation of unchanging reaction systems of cold-blooded animals.In: Physiological adaptation. A symposium held Sept. 5–6, 1957 at the Mar. Biol. Lab., Woods Hole, Mass. Ed. by C. L. Prosser. Am. Physiol. Soc., Washington, D. C., 50–78.

    Google Scholar 

  • —— 1964. Über die Bedeutung des Blutes für die Temperaturadaptation von Fischen.Zool. Jb. (Allg. Zool. Physiol. Tiere) 71, 313–328.

    Google Scholar 

  • —— &Hensel, H., 1955. Temperatur und Leben. Springer, Berlin, 514 pp.

    Google Scholar 

  • Prosser, C. L., 1962. Acclimation of poikilothermal vertebrates to low temperatures.In: Comparative physiology of temperature regulation. 2. Proc. of the Symposium on arctic biology and medicine. Ed. by J. P. Hannon & E. Viereck. Arctic Aeromedical Lab., Ft Wainright, Alaska, 1–44.

    Google Scholar 

  • Roberts, J. L., 1961. The influence of photoperiod upon thermal acclimation by the crucian carp,Carassius carassisu (L.).Zool. Anz. (Suppl. Bd.)24, 73–78.

    Google Scholar 

  • —— 1964. Metabolic responses of fresh-water sunfish to seasonal photoperiods and temperatures.Helgoländer wiss. Meeresunters. 9, 459–473.

    Google Scholar 

  • Schlieper, C., 1966. Genetic and nongenetic cellular resistance adaptation in marine invertebrates.Helgoländer wiss. Meeresunters. 14, 482–502.

    Google Scholar 

  • Stroganov, N. S., 1956. Physiological adaptability of fish to the temperature of the surrounding medium. Transl. from Russian by M. Roublev. Israel Progr. for Scientific Transl. (for Nat. Sci. Found., Wash., D.C.), Jerusalem, 108 pp.

  • Ushakov, B. P., 1964. Thermostability of cells and proteins of poikilotherms and its significance in speciation.Physiol. Rev. 44, 518–560.

    Google Scholar 

  • —— 1966. The problem of associated changes in protein thermostability in the process of speciation.Helgoländer wiss. Meeresunters. 14, 466–481.

    Google Scholar 

  • Winberg, C. G., 1956. Rate of metabolism and food requirements of fishes.Transl. Ser. Fish. Res. Bd. Can. 194, 1–253, 1960 (Nauch. Trudy Belorussk. Gosudarstv. Uninv. im. V. I. Lenina, Minsk).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr.H. Precht for his continuing insight into devising means and a philosophy to show how and why the old view that a cold-blooded animal is a „Spielball der Umgebungstemperatur“ is no longer acceptable.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, J.L. Systemic versus cellular acclimation to temperature by poikilotherms. Helgolander Wiss. Meeresunters 14, 451–465 (1966). https://doi.org/10.1007/BF01611638

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01611638

Keywords