Skip to main content
  • Adaptation And Quantitative Ecology (Poikilotherms)
  • Published:

The problem of associated changes in protein thermostability during the process of speciation

Das Problem der assoziierten Veränderungen in der Proteinthermostabilität während des Prozesses der Speziation

Kurzfassung

Neue Versuchsergebnisse über die Thermostabilität der Eiweiße nahe verwandter Tierarten (Würmer, Mollusken, Crustaceen, Fische, Amphibien, Reptilien und in gewissem Umfang auch Säugetiere) werden diskutiert und vergleichend analysiert. Die im Laboratorium für Vergleichende Cytology durchgeführten Experimente ergaben, daß das Ausmaß der Unterschiede in der Thermostabilität aller untersuchten Eiweiße nahe verwandter Tierarten große Ähnlichkeiten aufweist. Die interspezifischen Unterschiede werden auf Differenzen in der Hitzeresistenz der Proteine selber zurückgeführt. Da interspezifische Unterschiede in der Thermostabilität sogar in recht nahe verwandten Arten festgestellt wurden, wird gefolgert, daß die assoziierten Veränderungen in der Proteinthermostabilität im Verlauf der Speziation entstanden sind. Die an verschiedenen intraspezifischen Gruppen mehrerer Tierarten erhaltenen Ergebnisse deuten ferner darauf hin, daß diese Veränderungen in einer bestimmten Reihenfolge auf dem Wege der natürlichen Selektion zustande gekommen sind und schließlich den überwiegenden Teil der Eiweiße des Organismus betreffen. Als Ergebnis entstehen Arten, welche sich hinsichtlich ihrer Proteinthermostabilität unterscheiden; die Unterschiede nehmen zu mit der Differenz zwischen Reproduktions- und Umwelttemperatur. Die biologische Bedeutung der interspezifischen Unterschiede in der Proteinthermostabilität wird diskutiert.

Summary

  1. 1.

    New data are discussed comparing the thermostability of proteins in closely related species of worms, mollusks, crustaceans, fishes, amphibians, reptiles and, to some extent, mammals by the Laboratory of Comparative Cytology.

  2. 2.

    The differences in thermostability of all proteins studied in different pairs of species were similar. These interspecific variations were found to be due to differences in heat resistance of the proteins themselves.

  3. 3.

    Since interspecific differences in thermostability were discovered even in closely related species, this evidence permits the conclusion that associated changes in protein thermostability occur during speciation.

  4. 4.

    The analysis of protein heat resistance performed on various intraspecific groups of several animal species suggests that this alteration is accomplished by natural selection in a certain succession and finally involves the main bulk of the proteins of the organism. As a result species are formed which increasingly differ in protein thermostability with increasing variations in their reproductive and environmental temperatures.

  5. 5.

    The biological significance of interspecific differences in protein thermostability and a methodical approach to the solution of this problem are discussed.

Literature cited

  • Alexandrov, V. J., 1952. The relation between thermostability of protoplasm and environmental temperature conditions.Dokl. Akad. Nauk SSSR 83, 149–152.

    Google Scholar 

  • —— 1964. A study of the changes in resistance of plant cells to the action of various agents in the light of cytoecological consideration.In: The cell and environmental temperature. Ed. by A. S. Troshin. USSR Acad. Sci., Moscow; Pergamon pr., Oxford, U.K. 98–104.

    Google Scholar 

  • —— &Arronet, N. I., 1956. Adenosinetriphosphate cause the movement of cilia in ciliate epithelium killed by glycerine extraction (a “cellular model”).Dokl. Akad. Nauk SSSR 110, 457–460.

    Google Scholar 

  • Altukhov, Ju. P., 1962. A study of the thermostability of isolated muscles of “large” and “small”Trachurus mediterraneus from the Black Sea.Trudy Karadah. nauch. Sta. 18, 3–16, Lvov.

    Google Scholar 

  • Arronet, N. I., 1964. The site of application of an injurious thermal action in the cell.Dokl. Akad. Nauk SSSR 157, 437–439.

    Google Scholar 

  • Belehradek, J., 1964. Intermolecular aspects of the structural stability of protoplasma at the temperature extremes.In: The cell and environmental temperature. Ed. by A. S. Troshin. USSR Acad. Sci., Moscow; Pergamon pr., Oxford, U.K. 289–296.

    Google Scholar 

  • Braun, A. D., Nesvetajeva, N. M. &Fizhenko, N. V., 1959. On actomyosine resistance of grass and lake frogs to denaturating action of temperature and alcohol.Tsitologiya 1, 86–93.

    Google Scholar 

  • ——, &Fizhenko, N. V., 1963. On the thermostability of erythrocytes and their proteins ATP-ase and haemoglobin in two species of the frog.Tsitologiya 5, 249–253.

    Google Scholar 

  • ——,Nesvetajeva, N. M. &Fizhenko, N. V., 1964. The relation between resistance of cells and tissues to damage and denaturation capacity of proteins.In: The cell and environmental temperature. Ed. by A. S. Troshin. USSR Acad. Sci., Moscow; Pergamon pr., Oxford, U.K., 228–233.

    Google Scholar 

  • Glushankova, M A., 1963. Examination of the thermostability of actomyosin preparations and the iodine number of isolated lipids inTrachurus mediterraneus from the Black Sea.Tsitologiya 5, 244–246.

    Google Scholar 

  • Gustavson, K. H., 1956. The chemistry and reactivity of collagen. Acad. Pr., New York, 342 pp.

    Google Scholar 

  • Komkova, A. I. &Ushakov, B. P., 1955. Temperature inactivation of muscle ATP ase in grass and lake frogs.Dokl. Akad. Nauk SSSR 102, 1185–1188.

    Google Scholar 

  • Kusakina, A. A., 1961. Rate of decrease in cholinesterase activity in liver homogenates ofRana temporaria andRana ridibunda as dependent on temperature.Dokl. Akad. Nauk SSSR 139, 1258–1261.

    Google Scholar 

  • —— 1963. Relation of muscle and cholinesterase thermostability in certain fishes to specific environmental temperature conditions.Fedn Proc. Fedn Am. Socs exp. Biol. 22, 123–126 (Transl. Suppl.).

    Google Scholar 

  • —— 1963. Species differences in heat resistance of protoplasmic proteins.In: Problems of cytoecology of animals. USSR Acad. Sci., Moscow, 169–188 (Summary in English).

    Google Scholar 

  • -- 1965. Haemoglobin thermostability of five species of lizards from Kara-Kum Desert.In: Heat resistance of cells of animals. Moscow, 213–216.

  • —— &Skholl, E. D., 1963. Thermostability of the erythrocytes and haemoglobin derivatives of four Macaca species.Tsitologiya 5, 253–257.

    Google Scholar 

  • Licht, P., 1964a. The temperature dependence of myosin-adenosine triphosphatase and alkaline phosphatase in lizards.Comp. Biochem. Physiol. 12, 331–340.

    Google Scholar 

  • —— 1964b. A comparative study of the thermal dependence of contractivity in saurian skeletal muscle.Comp. Biochem. Physiol. 13, 27–34.

    Google Scholar 

  • Makhlin, E. E., 1963. Heat resistance of protein complexes of corneas ofRana temporaria L. andRana ridibunda Pall.In: Problems of cytoecology of animals. USSR Acad. Sci., Moscow, 199–208 (Summary in English).

    Google Scholar 

  • Hovanessian, S. S. &Petrossian, V. P., 1964. The study of actomyosin thermostability of sceletal muscles of sevan trout.In: The cell and environmental temperature. Ed. by A. S. Troshin. USSR Acad. Sci., Moscow, Pergamon pr., Oxford, U.K., 233–235.

    Google Scholar 

  • Pravdina, K. I., 1965. The thermostability of aldolase in taxonomically related species of amphibians.In: Heat resistance of cells of animals. Moscow, 193–199.

  • Precht, H., 1958. Concepts of the temperature adaptation of unchanging reaction system of coldblooded animals.In: Physiological adaptation. A symposium ... Ed. by C. L. Prosser. Am. Physiol. Soc., Washington, D.C., 52–78.

    Google Scholar 

  • —— &Hensel, H., 1955. Temperatur und Leben. Springer, Berlin, 514 pp

    Google Scholar 

  • Prosser, C. L., 1964. Metabolic and nervous acclimation of fish to cold.In: The cell and environmental temperature. Ed. by A. S. Troshin. USSR Acad. Sci., Moscow; Pergamon pr., Oxford, U.K., 245–253.

    Google Scholar 

  • Read, K. R. H., 1963. Thermal inactivation of preparations of aspartic/glutamic transaminase from species of bivalved molluscs from the sublitteral and intertidal zones.Comp. Biochem. Physiol. 9, 161–180.

    Google Scholar 

  • -- 1964. Comparative biochemistry of adaptations of poikilotherms to the thermal environment.In: Experimental marine ecology. Proceedings of a symposium ... Graduate School of Oceanography, Kingston, R.I. (Occ. Publs Narrangansett mar. Lab. 2, 39–47).

  • Svinkin, V. B., 1959. Spermatozoon thermostability inRana temporaria L. andRana ridibunda Pall.Tsitologiya 1, 580–585.

    Google Scholar 

  • Ushakov, B. P., 1963a. Cytophysiological analysis of intraspecies divergence ofRana ridibunda Pall.In: Problems of cytoecology of animals. USSR Acad. Sci., Moscow, 145–157 (Summary in English).

    Google Scholar 

  • —— 1963b. Changes of cellular heat resistance in ontogenesis and problem of conservatism of cells of higher poikilothermal animals.In: Problems of cytoecology of animals. USSR Acad. Sci., Moscow, 21–42 (Summary in English).

    Google Scholar 

  • —— 1964a. Thermostability of cells and proteins of poikilotherms and its significance in speciation.Physiol. Rev. 44, 518–560.

    Google Scholar 

  • —— 1964b. Thermostability of cells and protoplasmic proteins in poikilotherms as related to the problem of species.In: The cell and environmental temperature. Ed. by A. S. Troshin. USSR Acad. Sci., Moscow; Pergamon Pr., Oxford, U.K., 214–222.

    Google Scholar 

  • -- 1965. The present-day state of the problem of heat injury mechanism and causes of changes in cell thermostability.In: Heat resistance of cells of animals. Moscow, 5–54.

  • —— &Kusakina, A. A., 1960. On lability and conservatism of the animal cell adaptation as discovered on the protein level.Tsitologiya 2, 428–441.

    Google Scholar 

  • —— &Kusakina, A. A., 1962. Cytophysiological analysis of intraspecies differentiation ofCoregonus autumnalis andThymalus arcticus of the Baikal Lake.Zh. obshch. Biol. 23, 56–63 (Summary in English).

    Google Scholar 

  • Vegotsky, A. &Fox, S. W., 1962. Protein molecules: intraspecific and interspecific variations.In: Comparative biochemistry. Ed. by M. Florkin & H. S. Mason. Acad. pr., New York, Vol.4 B, 185–244.

    Google Scholar 

  • Vinogradova, A. N., 1961. The thermostability of succinicdehydrogenase ofRana temporaria andRana ridibunda muscles and the changes in the enzyme activity during acclimatization.Tsitologiya 3, 595–598.

    Google Scholar 

  • —— 1963a. Heat resistance and optimal temperature of adenosinetriphosphatase activity of actomyosin inCarcinus maenas (L.),Hyas araneus hoeki Bir.,Raja clavata L. andRaja radiata Donov. from the Black and the Barents seas.In: Problems of cytoecology of animals. USSR Acad. Sci., Moscow, 189–194 (Summary in English).

    Google Scholar 

  • —— 1963b. Investigation of heat resistance of actomyosin ofTestudo horsfieldi Gray andEmys orbicularis (L.) in connection with the problem of adaptation to living in deserts.In: Problems of cytoecology of animals. USSR Acad. Sci., Moscow, 195–198 (Summary in English).

    Google Scholar 

  • —— 1963c. Thermostability and temperature optimum of ATP ase activity of actomyosin of two species of marine mollusca.Tsitologiya 5, 246–249.

    Google Scholar 

  • -- 1965. The thermostability of actomyosin and myosin in two species of frogs.In: Heat resistance of cells of animals. Moscow, 188–192.

  • —— &Kusakina, A. A., 1963. Heat resistance of protoplasmic proteins in representatives of different populations ofRana ridibunda Pall.In: Problems of cytoecology of animals. USSR Acad. Sci., Moscow, 158–162 (Summary in English).

    Google Scholar 

  • Wilson, A. C., Kaplan, N. O., Levine, L., Pesce, A., Reichlin, M. &Allison, W. S., 1964. Evolution of lactic dehydrogenases.Fedn Proc. Fedn Am. Socs exp. Biol. 23 (Pt 6), 1258–1267.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ushakov, B.P. The problem of associated changes in protein thermostability during the process of speciation. Helgolander Wiss. Meeresunters 14, 466–481 (1966). https://doi.org/10.1007/BF01611639

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01611639

Keywords