Skip to main content
  • Adaptation To Temperature (Homiotherms)
  • Published:

Liver oxygen consumption of cold- and warm-acclimated rats and factors regulating liver oxidative metabolism

Lebersauerstoffverbrauch kalt- und warmakklimatisierter Ratten und Faktoren, welche den oxydativen Leberstoffwechsel regulieren

Kurzfassung

Der Sauerstoffverbrauch der isolierten Leber hängt von einer Reihe von Perfusionsbedingungen (Sättigung des Bluts mit Sauerstoff, Geschwindigkeit der Blutströmung durch die Leber, Temperatur) ab. Er vermindert sich während des Versuchs auch dann, wenn die Perfusionsbedingungen konstant gehalten werden, und zwar infolge der Veränderungen des Bluts während der Rezirkulation. Daher entsprechen nur die höchsten, zu Beginn des Perfusionsversuchs gemessenen Werte des Sauerstoffverbrauchs der isolierten Leber den Werten des Leberstoffwechsels in vivo. Dies bedeutet, daß der Ruhestoffwechsel der Rattenleber viel höher ist (6 bis 8 ml O2/g Leber/Std.), als man bisher auf Grund des Sauerstoffverbrauchs von Leberschnitten angenommen hat. Der durchschnittliche Ruhesauerstoffverbrauch der isolierten Leber kaltakklimatisierter (6° C) Ratten unterscheidet sich signifikant von dem warmakklimatisierter (30° C). Er trägt bei letzteren mit 19,3%, bei ersteren dagegen mit 26,5% zum Basalstoffwechsel bei; die Leber kaltakklimatisierter Ratten produziert also unter Basalbedingungen etwa 35% mehr Wärme als die Leber warmakklimatisierter. Die Wärmebildung in der Leber kann durch Hormone, erhöhte Substratkonzentration und Veränderungen der Blutdurchströmung der Leber gesteigert werden. Die quantitative Bedeutung dieses thermogenetischen Mechanismus ist aber wahrscheinlich sehr beschränkt.

Summary

  1. 1.

    Liver thermogenesis was determined by measuring the oxidative metabolism of isolated perfused rat liver.

  2. 2.

    Metabolism of isolated liver decreases during the perfusion experiment even when perfusion conditions are maintained constant. This decrease of metabolism is caused by changed blood composition occuring in the course of its recirculation. It can be concluded that only the highest level of oxygen consumption of isolated liver measured at the beginning of the perfusion experiment or after blood exchange during the experiment corresponds to the level of resting liver metabolism in vivo. On the basis of this finding it is necessary to assume that resting liver metabolism is much higher (about 6 to 8 ml O2/g of liver/hour) than was previously thought as a result of the measurement of O2 consumption of liver slices.

  3. 3.

    Livers and blood of rats (Sprague-Dawley strain) acclimated to warm (30°) or cold (6° C) were used. The average resting O2 consumption of liver isolated from cold-acclimated rats (7.8 ml O2/g/hour) differs significantly from the liver O2 consumption of warm-acclimated rats (6.2 ml O2/g/hour). Therefore, liver metabolism amounts to 19.3% of the basal metabolism in warm-acclimated and to 26.5% in cold-acclimated rats. Under basal conditions livers of rats acclimated to 6° C produce about 35% more heat than livers of rats acclimated to 30° C.

  4. 4.

    The utilization of liver thermogenesis for thermoregulatory purposes on exposure of the organism to cold can be estimated only roughly on the basis of changes of factors affecting the liver oxidative metabolism. Oxygen consumption of isolated perfused liver depends on perfusion factors connected with supplying the liver with oxygen, the rate of liver blood flow, temperature of environment and on metabolic factors connected with the content of metabolic substrates and hormones in the perfusion medium. These factors can increase the resting oxygen consumption of the liver.

  5. 5.

    We assume the existence of a thermogenetic mechanism, consisting of the hormone influence on the liver metabolism via changes in substrates concentration in the blood and by blood flow changes. However, there is some evidence that the quantiative significance of this thermogenetic mechanism is restricted.

Literature cited

  • Bearn, A. F., Billing, B. &Sherlock, S., 1951. The effect of adrenaline and noradrenaline on hepatic blood flow and splanchnic carbohydrate metabolism in man.J. Physiol. 115, 430–441.

    Google Scholar 

  • Behnke, Jr., A. R., 1958. The liver in relation to the body as a whole.In: Liver function. Ed. by R. W. Brauer. Am. Inst. Biol. Sci., Washington, D. C., 43–58.

    Google Scholar 

  • Bornstein, A. &Roese, H. F., 1930. Über die Beeinflussung des Sauerstoffverbrauches überlebender Organe durch Glykokoll (Untersuchungen zur Frage der spezifischdynamischen Wirkung des Glykokolls).Pflügers Arch. ges. Physiol. 223, 498–508.

    Google Scholar 

  • Bradley, S. E., 1949. Variations in hepatic blood flow in man during health and disease.New Engl. J. Med. 240, 456–461.

    Google Scholar 

  • Brauer, R. W., 1961. Liver circulation, liver function and liver integrity.Trans. Stud. Coll. Physns Philad. 29, 49–65.

    Google Scholar 

  • —— 1963. Liver circulation and function.Physiol. Rev. 43, 115–213.

    Google Scholar 

  • Depocas, F., 1958. Chemical thermogenesis in the functionally eviscerated cold-acclimated rat.Can. J. Biochem. Physiol. 36, 691–699.

    Google Scholar 

  • —— 1960a. The calorigenic response of cold-acclimated white rats to infused noradrenaline.Can. J. Biochem. Physiol. 38, 107–114.

    Google Scholar 

  • —— 1960b. Calorigenesis from various organ system in the whole animal.Fedn Proc. Fedn Am. Socs exp. Biol. 19, 19–24.

    Google Scholar 

  • —— &Heroux, O., 1957. Energy metabolism of the white rat after acclimation to warm and cold environments.J. appl. Physiol. 10, 393–397.

    Google Scholar 

  • Doležal, V., Manová, I., Kácl, K. &Krásný, J., 1963. Die kinetische Mikromethode zur Bestimmung der Glukose im Blut.Z. ges. inn. Med. 18, 1093–1095.

    Google Scholar 

  • —— &Janský, L., 1963. Perfusní přístroj měření metabolismu isolovaných krysích jater.Čslká fysiol. 12, 352–353.

    Google Scholar 

  • Field, J., Belding, H. S. &Martin, A. W., 1939 An analysis of the relation between basal metabolism and summated tissue respiration in the rat. 1. The post-pubertal albino rat.J. cell. comp. Physiol. 14, 143–158.

    Google Scholar 

  • Forsander, O. A., Räihä, N., Salaspuro, M. &Mäenpäa, P., 1965. Influence of ethanol on the liver metabolism of fed and starved rats.Biochem. J. 94, 259–265.

    Google Scholar 

  • Graf, W., 1959. Patterns of human liver temperature.Acta physiol. scand. 46 (Suppl. 160), 1–135.

    Google Scholar 

  • Hannon, J. P., Evonuk, E. &Larson, A. M., 1963. Some physiological and biochemical effect of norepinephrine in cold-acclimatized rat.Fedn Proc. Fedn Am. Socs exp. Biol. 22, 783–787.

    Google Scholar 

  • —— &Larson, A. M., 1962. Fatty acid metabolism during norepinephrine — induced thermogenesis in the cold-acclimatized rat.Am. J. Physiol. 203, 1055–1061.

    Google Scholar 

  • Hart, J. S., 1957. Climatic and temperature-induced changes in the energetics of homeotherms.Revue can. Biol. 16, 133–174.

    Google Scholar 

  • Janský, L., 1963. Body organ cytochrome oxidase activity in cold- and warm-acclimated rats.Can. J. Biochem. Physiol. 41, 1847–1854.

    Google Scholar 

  • -- 1965. Adaptability of heat production mechanisms in homeotherms.Acta Univ. Carol. (Biol.) 1965 (1), 1–91.

  • —— 1966. Body organ thermogenesis of the rat during exposure to cold and at maximal metabolic rate.Fedn Proc. Fedn Am. Socs exp. Biol. 25, 1297–1302.

    Google Scholar 

  • —— &Hart, J. S., 1963. Participation of skeletal muscle and kidney during nonshivering thermogenesis in cold-acclimated rats.Can. J. Biochem. Physiol. 41, 953–964.

    Google Scholar 

  • —— &Doležal, V., 1964. Effects of oxygen supply and noradrenaline infusion on liver metabolism of rats acclimatized to cold.Nature 202, 397–398.

    Google Scholar 

  • Krebs, H. A., 1950. Body size and tissue respiration.Biochim. biophys. Acta 4, 249–269.

    Google Scholar 

  • Lundsgaard, E., 1942. The specific dynamic action of amino acids and ammonia salts.Acta physiol. scand. 4, 330–348.

    Google Scholar 

  • —— 1950. Observations on a factor determining the metabolic rate of the liver.Biochim. biophys. Acta 4, 322–329.

    Google Scholar 

  • —— &Orskov, S. L., 1936. The carbohydrate metabolism of the isolated cat liver.Skand. Arch. Physiol. 73, 296–313.

    Google Scholar 

  • Martin, A. W. &Fuhrman, F. A., 1955. The relationship between summated tissue respiration and metabolic rate in the mouse and dog.Physiol. Zool. 28, 18–34.

    Google Scholar 

  • Mishkel, M. A. &Morris, B., 1963. The gaseous metabolism of the isolated perfused normal and choline deficient rats liver.Quart. Jl exp. Physiol. 48, 202–208.

    Google Scholar 

  • Murphy, J. R. &Muntz, J. A., 1957. The metabolism of glucose in the perfused rat liver.J. Biol. Chem. 224, 987–997.

    Google Scholar 

  • Ostashever, A. S., Gray, I. &Graff, S., 1960. Metabolic characteristics of the isolated perfused rat liver.Am. J. Physiol. 199, 395–399.

    Google Scholar 

  • Rimmer, A. D., Schönbaum, E. &Sellers, E. A. (1962). Effect of norepinephrine on blood glucose and free fatty acids in cold-adapted rats.Am. J. Physiol. 203, 95–97.

    Google Scholar 

  • Roughton, F. J. W. &Scholander, P. F. 1943. Micro-gasometric estimation of the blood gases. 1. Oxygen.J. Biol. Chem. 148, 541–550.

    Google Scholar 

  • Schimassek, H., 1962. Perfusion of isolated rat liver with semisynthetic medium and control of liver function.Life Sci., Oxf. 11, 629–634.

    Google Scholar 

  • Seifter, S., Dayton, S., Novic, B. &Muntwyler, E., 1950. The estimation of glycogen with anthrone reagent.Arch. Biochem. 25, 191–200.

    Google Scholar 

  • Weymouth, F. W., Field, H. J. &Kleiber, M., 1942. Relationship between body size and metabolism.Proc. Soc. exp. Biol. Med. 49, 367–370.

    Google Scholar 

  • Zeisberger, E., 1965. Oxydativní metabolismus isolovaných perfundovaných jater a význam jater pro thermogenesi. PhD Thesis, Charles Univ. Prague 1965.

  • --Doležal, V. &Janský, L., 1967. Influence of some perfusion factors on isolated rat liver oxidative metabolism.Physiologia Bohemoslov. (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeisberger, E. Liver oxygen consumption of cold- and warm-acclimated rats and factors regulating liver oxidative metabolism. Helgolander Wiss. Meeresunters 14, 528–540 (1966). https://doi.org/10.1007/BF01611643

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01611643

Keywords