Skip to main content
  • Published:

Nudibranch life cycles in the Northwest Atlantic and their relationship to the ecology of fouling communities

Lebenszyklen von Nudibranchiern aus dem Nordost-Atlantik und ihre Beziehung zur Ökologie von Aufwuchsorganismen

Kurzfassung

Die Lebenszyklen zahlreicher Nudibranchia-und Saccoglossa-Arten (Gastropoda) aus dem Nordwest-Atlantik werden vergleichend untersucht. Die meisten Species (Vertreter der Aeolidia und Saccoglossa) erzeugen zwei oder mehrere, sich überlappende Generationen pro Jahr. Sie werden früher geschlechtsreif und sind durch kontinuierliche Eiproduktion, rasches Wachstum, geringe Maximalgröße und hohe Stoffwechselintensitäten charakterisiert. Außerdem besitzen sie Dorsalpapillen mit Leberdivertikeln (Cerata) und ernähren sich von Hydroiden und Algen, die charakteristische Glieder früher Stadien der Aufwuchs-Lebensgemeinschaften darstellen. Eine kleinere Gruppe von Species (vorwiegend Doridacea) umfaßt dagegen Formen, die jährlich nur einmal Nachkommen hervorbringen sowie größere Körpermaße und relativ niedrigere Stoffwechselraten aufweisen. Sie ernähren sich vorwiegend von Bryozoen, deren Auftreten in der Artensukzession späte Stadien dieser Lebensgemeinschaften kennzeichnet. Verschiedene populationsdynamische Aspekte werden erörtert. Für das plötzliche Verschwinden der einzelnen Populationen sind mehrere Faktoren verantwortlich. Die kleineren Formen können bestimmte Mikrohabitate durch zu starkes Abweiden zerstören, während die größeren Formen bei der sehr rasch sich vollziehenden, totalen Entleerung der Geschlechtsprodukte zugrunde gehen. Das oft beobachtete unvermittelte Erscheinen derartiger Populationen beruht auf dem Auftreten zahlreicher, metamorphosebereiter Larven und dem raschen Wachstum der Jungtiere. Möglicherweise hängt auch das Ansetzen und die Metamorphose der Larven von dem Erreichen eines kritischen Temperaturniveaus ab. Die hohe Temperaturempfindlichkeit der meisten Nudibranchia erklärt, weshalb sie im Artenspektrum der Litoralfauna des Nordwest-Atlantik, wo beträchtliche Temperatur-Unterschiede auftreten, einen relativ geringen Anteil haben.

Summary

  1. 1.

    The most abundant nudibranchs in southern New England are small aeolids and sacoglossans. These gastropods are characteristically sub-annual species with asynchronous growth, continuous egg production and recruitment. Growth of individuals is notably rapid for molluscs, and is probably related to the possession of cerata, which appear to be an adaptation permitting increased rates of assimilation and metabolism. These characteristics represent adaptations to transient food sources which appear early in the microsuccession of fouling communities. Larger species, almost entirely dorids, have slower growth, restricted periods of egg production, synchronous growth cycles, and lower metabolic rates. These feed on more stable, longlived food sources characteristic of later successional stages.

  2. 2.

    The cerata represent convergent adaptations in four major taxa (Sacoglossa, Dendronotacea, Arminacea, and Aeolidacea) permitting an increase in growth and nonhomeostatic respiration. This is accomplished by an increase in both respiratory and digestive surface area.

  3. 3.

    The major component of recruitment of nudibranch populations is due to allochthonously-produced larvae. This may be of great value in repopulation of areas similar to southern New England, where temperature instability may preclude survival of a population for more than a few months.

  4. 4.

    High thermal sensitivity is characteristic of most nudibranchs of the western Atlantic, as indicated by high Q10 values. This sensitivity does not always cause mortality in natural populations, but is related to the rapid changes in population activity, and may represent a further adaptation to prey-species' life cycles. The interaction of high thermal sensitivity and a wide environmental temperature range, however, does limit the zoogeographic ranges and accounts for the low species diversity of the west Atlantic littoral fauna. Thermal sensitivity also explains the scarcity of intertidal species in southern New England, and accounts for the vernal disappearance of a few species.

  5. 5.

    Most species have type 1 (planktotrophic) development, which is of value in dispersal to and exploitation of new fouling growths. Some evidence is given that the proportion of type 1 development is higher in the western Atlantic than in the eastern Atlantic, which may relate to a greater instability of food species.

  6. 6.

    The widely-reported sudden appearances of populations are due to arrival of large numbers of larvae, followed by rapid growth to visible size. A critical temperature may stimulate settling and metamorphosis.

  7. 7.

    Sudden disappearances of adult populations are due to several causes. Small exploitist species normally overgraze food supplies following peak recruitment periods. This leads to destruction of the microhabitat and reduction of absolute population size, with apparent disappearance of individuals. Annual species normally die following periods of egg production, probably due to physiological weakening caused by extreme gonad output.

Literature cited

  • Alder, J. &Hancock, A., 1845–1855. A monograph of the British nudibranchiate Mollusca. Ray Soc., London, 369 pp.

    Google Scholar 

  • Balch, F. N., 1908. Two interesting New England nudibranch records. Nautilus22, 13.

    Google Scholar 

  • Bayer, F. M., 1963. Observations on pelagic mollusks associated with the siphonophoresVelella andPhysalia. Bull. mar. Sci. Gulf Caribb.13, 454–466.

    Google Scholar 

  • Bělehrádek, J., 1935. Temperature and living matter. Borntraeger, Berlin, 229 pp. (Protoplasma-Monographien. Vol. 8.)

    Google Scholar 

  • Bleakney, J. S. &Bailey, K. H., 1967. Rediscovery of the saltmarsh sacoglossanAlderia modesta Loven in eastern Canada. Proc. malac. Soc. Lond.37, 347–349.

    Google Scholar 

  • Chambers, L. A., 1934. Studies on the organs of reproduction in the nudibranchiate mollusks, with special reference toEmbletonia fuscata Gould. Bull. Am. Mus. nat. Hist.66, 599–641.

    Google Scholar 

  • Clark, K. B., 1971. Construction of a collecting device for small aquatic organisms and a method for rapid weighing of small invertebrates. Veliger13, 364–367.

    Google Scholar 

  • —— &Franz, D. R., 1969. Occurrence of the sacoglossan opisthobranchHermaea dendritica Alder &Hancock in New England. Veliger12, 174–175.

    Google Scholar 

  • Costello, D. P., 1938. Notes on the breeding habits of the nudibranchs of Monterey Bay and vicinity. J. Morph.63, 319–381.

    Google Scholar 

  • Darnell, R., 1970. Evolution and the ecosystem. Am. Zool.10, 9–15.

    Google Scholar 

  • Du Bois-Reymond Marcus, E., 1972. Notes on some opisthobranch gastropods from the Chesapeake Bay. Chesapeake Sci.13, 300–317.

    Google Scholar 

  • Emlen, J. M., 1973. Ecology: an evolutionary approach. Addison-Wesley, Reading, Mass., 493 pp.

    Google Scholar 

  • Franz, D. R., 1970. Zoogeography of northwest Atlantic opisthobranch molluscs. Mar. Biol.7, 171–180.

    Google Scholar 

  • —— &Clark, K. B., 1972. A discussion of the systematics, reproductive biology, and zoogeography ofPolycerella emertoni and related species. Veliger14, 265–270.

    Google Scholar 

  • Gonor, J. J., 1966. Feeding. In: Marine Biology. Ed. byW. J. Edmondson. N. Y. Acad. Sci., New York,3, 1–313.

    Google Scholar 

  • Grave, B. H., 1930. Natural History ofBugula flabellata at Woods Hole, Massachusetts. J. Morph.49, 355–383.

    Google Scholar 

  • Greene, R. W., 1970. Symbiosis in sacoglossan opisthobranchs: functional capacity of symbiotic chloroplasts. Mar. Biol.7, 138–142.

    Google Scholar 

  • Haderlie, E. C., 1969. Marine fouling and boring organisms in Monterey Harbor-II. Second year of investigation. Veliger12, 182–192.

    Google Scholar 

  • Hadfield, M. G., 1963. The biology of nudibranch larvae. Oikos14, 85–95.

    Google Scholar 

  • Hopkins, S. H., 1957. Parasitism. In: Treatise on marine ecology and paleoecology. Ed. byJ. Hedgpeth. Geol. Soc. Am., New York,1, 413–428 (Mem. Geol. Soc. Am. 67).

    Google Scholar 

  • Huvé, P., 1953. Etude experimentale du peuplement de surfaces rocheuses immergees, en Mediterranee occidentale. C. r. hebd. Séanc. Acad. Sci., Paris236, 419–422.

    Google Scholar 

  • Hyman, L., 1967. The invertebrates. McGraw Hill, New York,6, 1–792.

    Google Scholar 

  • Kepner, W., 1943. The manipulation of the nematocysts ofPennaria tiarella byAeolis pilata. J. Morph.73, 297–311.

    Google Scholar 

  • Lance, J. R., 1961. A distributional list of southern California opisthobranchs. Veliger4, 65–69.

    Google Scholar 

  • Lemche, H., 1938.Gastropoda Opisthobranchiata. Zoology Iceland4 (61), 1–54.

    Google Scholar 

  • —— 1941.Gastropoda Opisthobranchiata. The Godthaab expedition 1928. Meddr. Grønland121 (7), 1–65.

    Google Scholar 

  • Loveland, R. E., Hendler, G. &Newkirk, G., 1969. New records of nudibranchs from New Jersey. Veliger11, 418–420.

    Google Scholar 

  • MacArthur, R., 1955. Fluctuations of animal populations, and a measure of community stability. Ecology36, 533–536.

    Google Scholar 

  • MacDougall, K. D., 1943. Sessile marine invertebrates of Beaufort, North Carolina. Ecol. Monogr.13, 323–374.

    Google Scholar 

  • Marcus, E., 1956. On two sacoglossan slugs from Brazil. Am. Mus. Novit.1796, 1–21.

    Google Scholar 

  • —— 1961a. Opisthobranchia from North Carolina. J. Elisha Mitchell scient. Soc.77, 141–151.

    Google Scholar 

  • —— 1961b. Opisthobranch mollusks from California. Veliger3 (Suppl.), 1–84.

    Google Scholar 

  • —— &Du Bois-Reymond, E., 1970. Opisthobranchs from Curacao and faunistically related regions. Stud. Fauna Curaçao33, 1–129.

    Google Scholar 

  • Mileikovsky, S. A., 1960. About the range of dispersal of pelagic larvae of bottom invertebrates with marine currents. Dokl. Akad. Nauk. SSSR,135.

  • Millar, R. H., 1971. The biology of ascidians. Adv. mar. Biol.9, 1–101.

    Google Scholar 

  • Miller, M. C., 1961. Distribution and food of the nudibranchiate Mollusca of the south of the Isle of Man. J. Anim. Ecol.30, 95–116.

    Google Scholar 

  • —— 1962. Annual cycles of some Manx nudibranchs, with a discussion of the problem of migration. J. Anim. Ecol.31, 545–569.

    Google Scholar 

  • Moore, H. B., 1939. The colonization of a new rocky shore at Plymouth. J. Anim. Ecol.8, 29–38.

    Google Scholar 

  • Morse, M., 1909. The autonomy of the hydranth ofTubularia. Biol. Bull. mar. biol. Lab., Woods Hole16, 172–182.

    Google Scholar 

  • Morse, M. P., 1968. Functional morphology of the digestive system of the nudibranch molluscAcanthodoris pilosa. Biol. Bull. mar. biol. Lab., Woods Hole134, 305–319.

    Google Scholar 

  • —— 1969. Contributions to the knowledge of New England nudibranchs. A. Rep. Am. malac. Union,1969, 18.

    Google Scholar 

  • Nybakken, J., 1974. A phenology of the smaller dendronotacean, arminacean and aeolidacean nudibranchs at Asilomar State Beach over a twentyseven month period. Veliger16, 370–373.

    Google Scholar 

  • Orton, J. H., 1914. Preliminary account of a contribution to an evaluation of the sea: the life history ofGalvina picta. J. mar. biol. Ass. U. K.10, 323–324.

    Google Scholar 

  • Potts, G. W., 1970. The ecology ofOnchidoris fusca (Nudibranchia). J. mar. biol. Ass. U. K.50, 269–292.

    Google Scholar 

  • Rao, K. V., 1937. Structure, habits, and early development of a new species ofStiliger Ehrenberg. Rec. Indian Mus.39, 435–464.

    Google Scholar 

  • Rasmussen, E., 1944. Faunistic and biological notes on marine invertebrates I. Vidensk. Meddr dansk naturh. Foren.107, 207–233.

    Google Scholar 

  • Renn, C. E., 1936. The wasting disease ofZostera marina I. A phytological investigation of the diseased plant. Biol. Bull. mar. biol. Lab., Woods Hole70, 148–158.

    Google Scholar 

  • Risso-Dominguez, C. J., 1963. Measuring nudibranchs: A standardization for descriptive purposes. Proc. malac. Soc. Lond.35, 193–302.

    Google Scholar 

  • Robilliard, G., 1971. The systematic and some aspects of the ecology of the genusDendronotus. Veliger12, 433–479.

    Google Scholar 

  • Russell, H. D., 1964. New England nudibranch notes. Nautilus78, 37–42.

    Google Scholar 

  • Sanders, H. L., 1968. Marine benthic diversity: a comparative study. Am. Nat.102, 243–282.

    Google Scholar 

  • —— 1969. Benthic marine diversity and the stability-time hypothesis. Brookhaven Symp. Biol.22, 71–81.

    Google Scholar 

  • Scheer, B. T., 1945. The development of marine fouling communities. Biol. Bull. mar. biol. Lab., Woods Hole89, 103–121.

    Google Scholar 

  • Schmekel, L., 1968. Ascoglossa, Notaspidea und Nudibranchia im Litoral des Golfes von Neapel. Revue suisse Zool.75, 103–155.

    Google Scholar 

  • Smith, A. G. &Gordon, M., 1948. The marine molluscs and brachiopods of Monterey Bay, California, and vicinity. Proc. Calif. Acad. Sci. (Ser. 4)26, 147–245.

    Google Scholar 

  • Stebbing, A. R. D., 1971. The epizoic fauna ofFlustra foliacea. J. mar. biol. Ass. U. K.51, 283–300.

    Google Scholar 

  • —— 1973. Competition for space between the epiphytes ofFucus serratus. J. mar. biol. Ass. U. K.53, 247–261.

    Google Scholar 

  • Swennen, C., 1959. The Netherlands coastal waters as an environment for Nudibranchia. Basteria23 (Suppl.), 56–62.

    Google Scholar 

  • —— 1961. Data on distribution, reproduction, and ecology of the nudibranchiate molluscs occuring in the Netherlands. Neth. Jl Sea Res. 1191–1240.

  • Thompson, T. E., 1958. The natural history, embryology, larval biology and post-larval development ofAdalaria proxima (Alder &Hancock) (Gastropoda Opisthobranchia). Phil. Trans. R. Soc. (B)242, 1–58.

    Google Scholar 

  • —— 1961a. The structure and mode of functioning of the reproductive organs ofTritonia hombergi (Gastropoda Opisthobranchia). Q. Jl microsc. Sci.102, 1–14.

    Google Scholar 

  • —— 1961b. Observations on the life history of the nudibranchOnchidoris muricata (Muller). Proc. malac. Soc. Lond.34, 239–242.

    Google Scholar 

  • —— 1964. Grazing and the life cycles of British nudibranchs. Symp. Br. ecol. Soc.4, 275–297.

    Google Scholar 

  • —— 1967. Direct development in a nudibranch,Cadlina laevis, with a discussion of developmental processes in Opisthobranchia. J. mar. biol. Ass. U. K.47, 1–22.

    Google Scholar 

  • Thorson, G., 1966. Some factors influencing the recruitment and establishment of marine benthic communities. Neth. Jl Sea Res.3, 267–293.

    Google Scholar 

  • Turner, C. H., Ebert, E. E. &Given, R. R., 1969. Man-made reef ecology. Fish Bull. Calif.146, 1–221.

    Google Scholar 

  • Winckworth, R., 1932. The British marine Mollusca. J. Conch., Lond.19, 211–252.

    Google Scholar 

  • —— 1951. A list of the marine Mollusca of the British Isles: Additions and corrections. J. Conch., Lond.23, 131–134.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution number 100 of the Marine Research Laboratory.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, K.B. Nudibranch life cycles in the Northwest Atlantic and their relationship to the ecology of fouling communities. Helgolander Wiss. Meeresunters 27, 28–69 (1975). https://doi.org/10.1007/BF01611686

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01611686

Keywords