Skip to main content
  • Published:

Physiologische und ökologische Aspekte des Lebens in Ästuarien

Physiological and ecological aspects of life in estuaries

Abstract

In spite of their structural diversity, estuarine organisms exhibit close functional similarities, particularly with respect to the compensatory measures employed to counteract the ill effects of their rough osmotic and thermal environment. Four groups of such compensatory possibilities are distinguished: escape, reduction of contact, regulation and adaptation. It should be emphasized that these compensation types may occur simultaneously in one and the same individual and that they may not always be distinguishable to the last detail. Nevertheless, such a subdivision makes it possible to present the multiplicity of physiological and ecological responses in some order and may prove a useful tool for further analyses. With respect to compensations for the potential ill effects of salinity, escape, reduction of contact and regulation (ion-, volume- and osmoregulation) appear to be most important. In regard to extreme temperature conditions, escape and adaptation represent the primary means for compensation. The information on hand indicates that compensations for adverse salinities are more immediately available and better developed than those for adverse temperatures. Unsuitable temperature conditions are tolerated rather than compensated for and thus may greatly affect metabolic rate, activity, reproduction and other functions as well as structural aspects. The most important characteristic of estuarine organisms — their euryplasticity — seems to be a rather rare asset both in the plant and animal kingdom and phylogenetically quite conservative.

Zusammenfassung

1. Die physiologischen und ökologischen Eigenarten ästuariner Organismen werden erörtert, und zwar unter besonderer Berücksichtigung der diesen zu Gebote stehenden Kompensationsmöglichkeiten gegenüber unerwünschten Salinitäts- und Temperaturverhältnissen. Trotz ihrer unterschiedlichen Baupläne zeichnen sich typische Ästuarbewohner durch eine Reihe recht ähnlicher Reaktionsmuster aus.

2. Permanente Ästuarbewohner sind in ihren physiologischen und ökologischen Reaktionen durchweg ausgesprochen euryplastisch. Sie verfügen über ein großes abiotisches Potential. Ihr biotisches Potential (Widerstandsfähigkeit gegenüber biotischen Faktoren; Konkurrenzvermögen) dagegen ist vielfach gering.

3. Es werden vier Gruppen von Kompensationsmöglichkeiten unterschieden: Ausweichreaktionen (direkte und indirekte), Kontaktverminderungen (Absonderung schützender Substanzen, Rückzug in Wohnhöhlen etc., Verringerung des Oberflächen/Volumen-Quotienten, Einziehen empfindlicher Organe, Schalenverschluß, langfristige Veränderungen der Körperform, Transformationen in Ruhestadien), Regulationen (Ionen-, Volum- und Osmoregulation), Adaptationen (genetische und nichtgenetische).

4. Die vier unterschiedenen Kompensationsmöglichkeiten lassen sich nicht immer bis ins letzte Detail klar voneinander trennen. Sie können gleichzeitig in ein und demselben Individuum wirksam werden. Ihre begriffliche Differenzierung erleichtert aber die Erarbeitung der teilweise recht komplexen Zusammenhänge.

5. Hinsichtlich einer Kompensation der schädlichen Wirkungen ungeeigneter Salinitätsverhältnisse sind Ausweichreaktionen, Kontaktverminderungen und Regulationen von besonderer Bedeutung. Bei ungünstigen Temperaturverhältnissen beschränken sich die Kompensationsmöglichkeiten vor allem auf Ausweichreaktionen und Adaptationen. Ungünstige Salzgehaltsverhältnisse können demnach rascher und effektvoller kompensiert werden.

6. Das profilierteste physio-ökologische Merkmal der Ästuarbewohner, die Euryplastizität, scheint eine schwer erwerbbare, phylogenetisch recht alte und konservative Eigenschaft darzustellen.

Zitierte literatur

  • Ackerman, E., 1962. Biophysical science. Prentice-Hall, Inc., Englewood Cliffs, N. J., 626 pp.

    Google Scholar 

  • Adolph, E. F., 1956. General and specific characteristics of physiological adaptations.Am. J. Physiol. 184, 18–28.

    Google Scholar 

  • —— 1964. Perspectives of adaptation: some general properties.In: Handbook of physiology. Ed. byD. B. Dill, E. F. Adolph &C. G. Wilber, Am. Physiol. Soc., Wash., Sect. 4, 27–35.

    Google Scholar 

  • Alexander, W. B., Southgate, B. A. &Bassindale, R., 1935. Survey of the River Tees. Part. 2. The estuary — chemical and biological.Tech. Paper Dept. Sci. Indust. Res. Water Pollution Res. No. 5, 1–171.

  • Beadle, L. C., 1931. The effect of salinity changes on the water content and respiration of marine invertebrates.J. exp. Biol. 8, 211–227.

    Google Scholar 

  • —— 1934. Osmotic regulation inGunda ulvae.J. exp. Biol. 11, 382–396.

    Google Scholar 

  • —— 1937. Adaptation to changes of salinity in the polychaetes. I. Control of body volume and of body fluid concentration inNereis diversicolor.J. exp. Biol. 14, 56–70.

    Google Scholar 

  • —— 1957. Comparative physiology: osmotic and ionic regulation in aquatic animals.A. Rev. Physiol. 19, 329–354.

    Google Scholar 

  • —— &Cragg, J. B., 1940. Studies on adaptation to salinity inGammarus spp. 1. Regulation of blood and tissues and the problem of adaptation to fresh water.J. exp. Biol. 17, 153–163.

    Google Scholar 

  • Bergquist, P. L., 1958a. Evidence for separate mechanisms of sodium and potassium regulation inHomosira banksii.Physiologia Pl. 11, 760–770.

    Google Scholar 

  • —— 1958b. Effect of potassium cyanide on apparent free space in a brown alga.Nature, Lond. 181, 1270.

    Google Scholar 

  • Bethe, A., Holst, E. von &Huf, E., 1935. Die Bedeutung des mechanischen Innendrucks für die Anpassung gepanzerter Seetiere an Änderungen des osmotischen Außendrucks.Pflügers Arch. ges. Physiol. 235, 330–334.

    Google Scholar 

  • Biebl, R., 1937. Ökologische und zellphysiologische Studien an Rotalgen der englischen Südküste.Beih. bot. Zbl. (A)57, 381–424.

    Google Scholar 

  • —— 1956. Zellphysiologisch-ökologische Untersuchungen anEnteromorpha clathrata (Roth) Greville.Ber. bot. Ges. 69, 75–86.

    Google Scholar 

  • Black, V. S., 1957. Excretion and osmoregulation.In: The physiology of fishes. Ed. byM. E. Brown. Acad. pr., New York, Vol. 1, 447 pp.

    Google Scholar 

  • Blinks, L. R., 1951. Physiology and biochemistry of algae.In: Manual of phycology. Ed. byG. M. Smith. Chronica Bot. Co., Waltham, Mass., 263–291.

    Google Scholar 

  • Braarud, T., 1951. Salinity as an ecological factor in marine phytoplankton.Physiologia Pl. 4, 28–34.

    Google Scholar 

  • —— &Pappas, I., 1951. Experimental studies on the dinoflagellatePeridinium triquetrum (Ehrb.) Lebour.Avh. norske Vidensk Akad. Oslo (Mat. nat. Kl.) 1951 (2), 1–23.

    Google Scholar 

  • Broekema, M. M. M., 1941. Seasonal movements and the osmotic behaviour of the shrimp,Crangon crangon L.Archs néerl. Zool. 6, 1–100.

    Google Scholar 

  • Brown, R. &Danielli, J. F. (Eds.), 1955. Active transport and secretion.Symp. Soc. exp. Biol. 8, 1–516.

    Google Scholar 

  • Buchheim, A., 1915. Der Einfluß des Außenmediums auf den Turgordruck einiger Algen.Mitt. naturf. Ges. Bern, 70–113.

  • Bünning, E., 1934. Zellphysiologische Studien an Meeresalgen.Protoplasma 22, 444–456.

    Google Scholar 

  • Callamand, O., 1943. L'anguille européenne (Anguilla anguilla L.) les bases physiologiques de sa migration.Annls Inst. océanogr., Monaco 21, 361–440.

    Google Scholar 

  • Caspers, H., 1948. Ökologische Untersuchungen über die Wattentierwelt im Elbeästuar.Zool. Anz. (Suppl. Bd.)13, 350–359.

    Google Scholar 

  • —— 1955. Limnologie des Elbeästuars.Verh. int. Ver. Limnol. 12, 613–619.

    Google Scholar 

  • —— 1958. Biologie der Brackwasserzonen im Elbeästuar.Verh. int. Ver. Limnol. 13, 687–698.

    Google Scholar 

  • —— 1959. Die Einteilung der Brackwasser-Regionen in einem Ästuar.Archo Oceanogr. Limnol. (Suppl.)11, 153–169.

    Google Scholar 

  • Clarke, F. W., 1924. The data of geochemistry.Bull. U.S. geol. Surv. 770, 841 pp.

  • Cole, W. H., 1940. The composition of fluids and sera of some marine animals and of the sea water in which they live.J. gen. Physiol. 23, 575–584.

    Google Scholar 

  • Collander, R., 1939. Permeabilitätsstudien an Charazeen. 3. Die Aufnahme und Abgabe von Kationen.Protoplasma 33, 215–257.

    Google Scholar 

  • Croghan, P. C., 1958a. The survival ofArtemia salina (L.) in various media.J. exp. Biol. 35, 213–218.

    Google Scholar 

  • —— 1958b. The osmotic and ionic regulation ofArtemia salina (L.).J. exp. Biol. 35, 219–233.

    Google Scholar 

  • Day, J. H., 1951. The ecology of South African estuaries. 1. A review of estuarine conditions in general.Trans. R. Soc. S. Afr. 33, 53–91.

    Google Scholar 

  • Drevs, P., 1896. Die Regulation des osmotischen Druckes in Meeresalgen bei Schwankungen des Salzgehaltes im Außenmedium.Arch. Ver. Freunde Naturg. Meckenb. 49, 91–135.

    Google Scholar 

  • Droop, M. R., 1958. Optimum relative and actual ionic concentrations for growth of some euryhaline algae.Verh. int. Ver. Limnol. 13, 722–730.

    Google Scholar 

  • Duval, M., 1925. Récherches physico-chimiques et physiologiques sur le milieu intérieur des animaux aquatiques. Modifications sous l'influence du milieu extérieur.Annls Inst. océanogr., Monaco 2, 233–403.

    Google Scholar 

  • Ellis, W. G., 1937. The water and electrolyte exchange ofNereis diversicolor (Mueller).J. exp. Biol. 14, 340–350.

    Google Scholar 

  • —— 1939. Comparative measurements of water and electrolyte exchange in a stenohaline and a euryhaline polychaete.J. exp. Biol. 16, 483–486.

    Google Scholar 

  • Emery, K. O., Stevenson, R. E. &Hedgpeth, J. W., 1957. Estuaries and lagoons.Mem. geol. Soc. Am. 67 (1), 673–749.

    Google Scholar 

  • Eppley, R. W., 1958a. Sodium exclusion and potassium retention by the red marine alga,Porphyra perforata.J. gen. Physiol. 41, 901–911.

    Google Scholar 

  • —— 1958b. Potassium-dependent sodium extrusion by cells ofPorphyra perforata, a red marine alga.J. gen. Physiol. 42, 281–288.

    Google Scholar 

  • —— 1962. Major cations.In: Physiology and biochemistry of algae. Ed. byR. A. Lewin, Acad. pr., New York, 255–266.

    Google Scholar 

  • —— &Bovell, C. R., 1958. Sulfuric acid inDesmarestia.Biol. Bull mar. biol. Lab., Woods Hole 115, 101–106.

    Google Scholar 

  • —— &Cyrus, C. C., 1960. Cation regulation and survival of the red alga,Porphyra perforata, in diluted and concentrated sea water.Biol. Bull. mar. biol. Lab., Woods Hole 118, 55–65.

    Google Scholar 

  • Flügel, H., 1959. Zum Problem der Osmoregulation im tropischen Brackwasser.Naturwissenschaften 46, 213.

    Google Scholar 

  • Fretter, V., 1955. Uptake of radioactive sodium (24Na) byNereis diversicolor Mueller andPerinereis cultrifera Grube.J. mar. biol. Ass. U.K. 34, 151–160.

    Google Scholar 

  • Garms, R., 1961. Biozönotische Untersuchungen an Entwässerungsgräben in Flußmarschen des Elbeästuars.Arch. Hydrobiol. (Suppl.)34, 151–160.

    Google Scholar 

  • Gueylard, F., 1924. Paris, Ph. D. Thesis (quoted inBlack, 1957).

  • —— 1925. De l'adaptation aux changements de salinité. Recherches biologiques et physcochimiques sur l'épinoche (Gasterosteus leiurus Cur. et Val.).Archs Phys. biol. 3, 79–187.

    Google Scholar 

  • Guillard, R. R. L., 1962. Salt and osmotic balance.In: Physiology and biochemistry of algae. Ed. by.R. A. Lewin, Acad. pr., New York, 529–540.

    Google Scholar 

  • —— &Ryther, J. H., 1962. Studies of marine planktonic diatoms. 1.Cyclotella nana Hustedt, andDetonula confervacea (Cleve) Gran.Can. J. Micribiol. 8, 229–239.

    Google Scholar 

  • Handbook of physiology. Sect. 4. Adaptation to the environment (1964). Ed. byD. B. Dill, E. F. Adolph &C. G. Wilber. Am. Physiol. Sco., Washington, 1056 pp.

  • Höfler, K., 1931. Hypotonietod und osmotische Resistenz einiger Rotalgen.Öst. bot. Z. 80, 51–71.

    Google Scholar 

  • —— 1932. Plasmolyseformen beiChaetomorpha undCladophora.Protoplasma 16, 189–214.

    Google Scholar 

  • Hope, A. B. &Walker, N. A., 1960. Ionic relations ofChara australis. 3. Vaculoar fluxes of sodium.Aust. J. biol. Sci. 13, 276–291.

    Google Scholar 

  • Jones, L. L., 1941. Osmotic regulation in several crabs of the Pacific coast of North America.J. cell. comp. Physiol. 18, 79–92.

    Google Scholar 

  • Jørgensen, C. B. &Dales, R. P., 1957. The regulation of volume and osmotic regulation in some nereid polychaetes.Physiologia comp. Oecol. 4, 357–374.

    Google Scholar 

  • Jørgensen, E. G., 1960. The effects of salinity, temperature, and light intensity on growth and chlorophyll formation ofNitzschia ovalis.Yb. Carnegie Inst. Wash. 59, 348–349.

    Google Scholar 

  • Kesseler, H., 1959. Mikrokryoskopische Untersuchungen zur Turgorregulation vonChaetomorpha linum.Kieler Meeresforsch. 15, 51–73.

    Google Scholar 

  • —— 1960. Morphologische und zellphysiologische Untersuchungen vonChaetomorpha linum.Helgol. Wiss. Meeresunters. 7, 114–124.

    Google Scholar 

  • —— 1962. Beziehungen zwischen Atmung und Turgorregulation vonChaetomorpha linum.Helgol. Wiss. Meeresunters. 8, 243–256.

    Google Scholar 

  • —— 1964. Die Bedeutung einiger anorganischer Komponenten des Seewassers für die Turgorregulation vonChaetomorpha linum (Cladophorales).Helgol. Wiss. Meeresunters. 10, 73–90.

    Google Scholar 

  • Kinne, O., 1952. Zur Biologie und Physiologie vonGammarus duebeni Lillj. V: Untersuchungen über Blutkonzentration, Herzfrequenz und Atmung.Kieler Meeresforsch. 9, 134–150.

    Google Scholar 

  • —— 1956. Über Temperatur und Salzgehalt und ihre physiologisch-biologische Bedeutung.Biol. Zbl. 75, 314–327.

    Google Scholar 

  • —— 1963a. The effects of temperature and salinity on marine and brackish water animals. 1. Temperature.Oceanogr. mar. Biol. A. Rev. 1, 301–340.

    Google Scholar 

  • —— 1963b. Adaptation, a primary mechanism of evolution.In: Phylogeny and evolution of Crustacea. Ed. byH. B. Whittington &W. D. I. Rolfe. Mus. comp. Zool. Harvard Coll., Cambridge, Mass. (Spec. publ.), 27–50.

    Google Scholar 

  • —— 1964a. Animals in aquatic environments: crustaceans.In: Handbook of physiology. Ed. byD. B. Dill, E. F. Adolph &C. G. Wilber. Am. Physiol. Soc., Wash., Sect. 4, 669–682.

    Google Scholar 

  • —— 1964b. The effects to temperature and salinity on marine and brackish water animals. 2. Salinity and temperature-salinity combinations.Oceanogr. mar. Biol. A. Rev. 2, 281–339.

    Google Scholar 

  • —— 1964c. Non-genetic adaptation to temperature and salinity.Helgol. Wiss. Meeresunters. 9, 433–458.

    Google Scholar 

  • —— &Rotthauwe, H.-W., 1952. Biologische Beobachtungen und Untersuchungen über die Blutkonzentration anHeteropanope tridentatus Maitland (Decapoda).Kieler Meeresforsch. 8, 212–217.

    Google Scholar 

  • Kitching, J. A., 1938. Contractile vacuoles.Biol. Rev. 13, 403–444.

    Google Scholar 

  • —— 1948. The physiology of contractile vacuoles. 6. Temperature and osmotic stress.J. exp. Biol. 25, 421–436.

    Google Scholar 

  • —— 1951. The physiology of contractile vacuoles. 7. Osmotic relations in a suctorian, with special reference to the mechanism of control of vacuolar output.J. exp. Biol. 28, 203–214.

    Google Scholar 

  • —— 1952. Contractile vacuoles.Symp. Soc. exp. Biol. 6, 145–146.

    Google Scholar 

  • —— 1954. Osmoregulation and ionic regulation in animals without kidneys.Symp. Soc. exp. Biol. 8, 63–75.

    Google Scholar 

  • Koch, H. J., 1954. Cholinesterase and active transport of sodium chloride through the isolated gills of the crabEriocheir sinensis (M. Edw.).In: Recent developments in cell physiology. Ed. byJ. A. Kitching, Acad. pr., New York, 15–27.

    Google Scholar 

  • —— &Evans, J., 1956a. On the absorption of sodium from dilute solutions by the crabEriocheir sinensis (M. Edw.).Meded. K. vlaam. Acad. 18, 3–15.

    Google Scholar 

  • —— —— 1956b. Influence of a basic dye, thionine, on the absorption of sodium by the crabEriocheir sinensis (M. Edw.).Meded. K. vlaam. Acad. 18, 3–11.

    Google Scholar 

  • —— &Heuts, M. J., 1942. Influences de l'hormone thyroidienne sur la regulation osmotique chezGasterosteus aculeatus L. formegymnurus Cuv.Annls Soc. r. zool. Belg. 73, 165–172.

    Google Scholar 

  • —— 1943. Osmotic regulation, sexual cycle and migration of reproduction of the épinoches.Archs int. Physiol. 53, 253–266.

    Google Scholar 

  • Koller, G., 1939. Über die Nephridien vonPhyscosoma japonicum.Zool. Anz. (Suppl. Bd.)12, 440–447.

    Google Scholar 

  • Kötter, F., 1961. Die Pflanzengesellschaften im Tidegebiet der Unterelbe.Arch. Hydrobiol. (Suppl.)26, 106–184.

    Google Scholar 

  • Kothe, P., 1961. Hydrobiologie der Oberelbe.Arch. Hydrobiol. (Suppl.)26, 221–343.

    Google Scholar 

  • Krishnamoorthi, B., 1951. Studies on the osmotic properties of the eggs and larvae of a brackish-water polychaete,Marphysa gravelyi Southern.Proc. Indian Acad. Sci. (Sect. B)34, 199–209.

    Google Scholar 

  • Krogh, A., 1938. The salt concentration in the tissues of some marine animals.Skand. Arch. Physiol. 80, 214–222.

    Google Scholar 

  • —— 1939. Osmotic regulation in aquatic animals. Cambridge Univ. pr., London, 242 pp.

    Google Scholar 

  • Lewin, R. A. (Ed.), 1962. Physiology and biochemistry of algae. Acad. pr., New York, 929 pp.

    Google Scholar 

  • -- &Guillard, R. R. L., 1963. Diatoms.A. Rev. Microbiol. 17, 373–414.

    Google Scholar 

  • Lockwood, A. P. M., 1962. The osmoregulation of Crustacea.Biol. Rev. 37, 257–305.

    Google Scholar 

  • MacRobbie, E. A. C. &Dainty, J., 1958a. Sodium and potassium distribution and transport in the seaweedRhodymenia palmata (L.) Grev.Physiologia Pl. 11, 782–801.

    Google Scholar 

  • —— —— 1958b. Ion transport inNitellopsis obtusa.J. gen. Physiol. 42, 335–353.

    Google Scholar 

  • McCombie, A. M., 1960. Actions and interactions of temperature, light intensity and nutrient concentration on the growth of the green alga,Chlamydomonas reinhardi Dangeard.J. Fish. Res. Bd. Can. 17, 871–894.

    Google Scholar 

  • Müller, R., 1936. Die osmoregulatorische Bedeutung der kontraktilen Vakuolen vonAmoeba proteus, Zoothamnium hiketes undFrontonia marina.Arch. Protistenk. 87, 345–382.

    Google Scholar 

  • Nagel, H., 1934. Die Aufgaben der Exkretionsorgane und der Kiemen bei der Osmoregulation vonCarcinus maenas.Z. vergl. Physiol. 21, 468–491.

    Google Scholar 

  • Nicol, J. A. C., 1960. The biology of marine animals. Interscience publ., Inc., New York, 707 pp.

    Google Scholar 

  • Oberthür, K., 1937. Untersuchungen anFrontonia marina Fabre-Dom. aus einer Binnenland-Salzquelle unter besonderer Berücksichtigung der pulsierenden Vakuole.Arch. Protistenk. 88, 387–420.

    Google Scholar 

  • Panikkar, N. K., 1939. Osmotic behavior ofPalaemonetes varians (Leach).Nature Lond. 144, 866–867.

    Google Scholar 

  • —— 1940. Osmotic properties of the common prawn.Nature, Lond. 145, 108.

    Google Scholar 

  • —— 1941. Osmoregulation in some palaemonid prawns.J. mar. biol. Ass. U.K. 25, 317–359.

    Google Scholar 

  • —— 1950. Physiological aspects of adaptation to estuarine conditions.Proc. Indo-Pacif. Fish. Coun. 2, 168–175.

    Google Scholar 

  • —— &Viswanathan, R., 1948. Active regulation of chloride inMetapenaeus monoceros Fab.Nature, Lond. 161, 137–138.

    Google Scholar 

  • Pantin, C. F. A., 1931a. The adaptation ofGunda ulvae to salinity. I. The environment.J. exp. Biol. 8, 63–72.

    Google Scholar 

  • —— 1931b. The adaptation ofGunda ulvae to salinity. 3. The electrolyte exchange.J. exp. Biol. 8, 82–94.

    Google Scholar 

  • Pearse, A. S. &Gunter, G., 1957. Salinity.Mem. geol. Soc. Am. 67, 129–157.

    Google Scholar 

  • Potts, W. T. W. &Parry, G., 1963. Osmotic and ionic regulation in animals. Pergamon pr., London, 402 pp.

    Google Scholar 

  • Precht, H., 1964. Über die Resistenzadaptation wechselwarmer Tiere an extreme Temperaturen und ihre Ursachen.Helgol. Wiss. Meeresunters. 9, 392–411.

    Google Scholar 

  • Pritchard, D. W., 1952. Salinity distribution and circulation in the Chesapeake Bay Estuarine System.J. mar. Res. 11, 106–123.

    Google Scholar 

  • Prosser, C. L., 1964. Perspectives of adaptation: theoretical aspects.In: Handbook of physiology. Ed. byD. B. Dill, E. F. Adolph &C. G. Wilber. Am. Physiol. Soc., Wash., Sect. 4, 11–25.

    Google Scholar 

  • —— &Brown, F. A., Jr., 1961. Comparative animal physiology. 2nd ed., Saunders, Philadelphia, Pa., 688 pp.

    Google Scholar 

  • Provasoli, L., 1958. Nutrition and ecology of Protozoa and algae.A. Rev. Microbiol. 12, 279–308.

    Google Scholar 

  • —— &Pintner, I. J., 1954. Relative and limiting concentrations of major mineral constituents for the growth of algal flagellates.Trans. N. Y. Acad. Sci. (Ser. 2),16, 412–417.

    Google Scholar 

  • Reid, G. K., 1961. Ecology of inland waters and estuaries. Reihold, New York, 375 pp.

    Google Scholar 

  • Remane, A. &Schlieper, C., 1958. Die Biologie des Brackwassers.In: Die Binnengewässer. Hrsg. vonA. Thienemann. Schweizerbart, Stuttgart, Bd. 22, 348 pp.

  • Robertson, J. D., 1957. Osmotic and ionic regulation in aquatic invertebrates. Recent advances in invertebrate physiology.Publs Univ. Oregon, 229–246.

  • —— 1960a. Osmotic and ionic regulationIn: The physiology of Crustacea. Ed. byT. H. Waterman. Acad. pr., New York, Vol. 1, 317–339.

    Google Scholar 

  • —— 1960b. Ionic regulation in the crabCarcinus maenas (L.) in relation to the moulting cycle.Comp. Biochem. Physiol. 1, 183–212.

    Google Scholar 

  • Rothschild, L. &Barnes, H., 1953. The inorganic constituents of the sea-urching egg.J. exp. Biol. 30, 534–544.

    Google Scholar 

  • Schlieper, C., 1929a. Über die Einwirkung niederer Salzkonzentrationen auf marine Organismen.Z. vergl. Physiol. 9, 478–514.

    Google Scholar 

  • —— 1929b. Neue Versuche über die Osmoregulation wasserlebender Tiere.S. B. Ges. ges. Naturw. Marburg 64, 143–156.

    Google Scholar 

  • —— 1930. Die Osmoregulation wasserlebender Tiere.Biol. Rev. 5, 309–356.

    Google Scholar 

  • —— 1935. Neuere Ergebnisse und Probleme aus dem Gebiet der Osmoregulation wasserlebender Tiere.Biol. Rev. 10, 334–360.

    Google Scholar 

  • Schmitz, W., 1959. Zur Frage der Klassifikation der binnenländischen Brackwasser.Archo Oceanogr. Limnol. (Suppl.)11, 179–226.

    Google Scholar 

  • Schulz, H., 1961. Qualitative und quantitative Planktonuntersuchungen im Elbe-Ästuar.Arch. Hydrobiol. (Suppl.)26, 5–105.

    Google Scholar 

  • Schumacher, A., 1961. Die biologischen Verhältnisse in Nebenflüssen der Unterelbe.Arch. Hydrobiol. (Suppl.)26, 185–219.

    Google Scholar 

  • Scott, G. T. &Hayward, H. R., 1953. Metabolic factors influencing the sodium and potassium distribution inUlva lactuca.J. gen. Physiol. 36, 659–671

    Google Scholar 

  • ——, —— 1954. Evidence for the presence of separate mechanisms regulating potassium and sodium distribution inUlva lactuca.J. gen. Physiol. 37, 601–620.

    Google Scholar 

  • ——, —— 1955. Sodium and potassium regulation inUlva lactuca andValonia macrophysa.In: Electrolytes in biological systems. Ed. byA. M. Shanes. Am. Physiol. Soc., Wash., 35–64.

    Google Scholar 

  • Seck, C., 1958. Untersuchungen zur Frage der Ionenregulation bei in Brackwasser lebenden Evertebraten.Kieler Meeresforsch. 13, 220–243.

    Google Scholar 

  • Shaw, J., 1960. The mechanisms of osmoregulation.In: Comparative biochemistry. Ed. byM. Florkin &H. S. Mason. Acad. pr., New York, Vol. 2, 479–518.

    Google Scholar 

  • Smith, R. I., 1955a. Comparsion of the level of chloride regulation byNereis diversicolor in different parts of its geographical range.Biol. Bull. mar. biol. Lab., Woods Hole 109, 453–474.

    Google Scholar 

  • —— 1955b. On the distribution ofNereis diversicolor in relation to salinity in the vicinity of Tvärminne, Finland, and the Isefjord, Denmark.Biol. Bull. mar. biol. Lab., Woods Hole 108, 326–345.

    Google Scholar 

  • —— 1955c. Salinity variation in interstitial water of sand at Kames Bay, Millport, with reference to the distribution ofNereis diversicolor.J. mar. biol. ass. U.K. 34, 33–46.

    Google Scholar 

  • —— 1956. The ecology of the Tamar estuary. 7. Observations on the interstitial salinity of intertidal muds in the estuarine habitat ofNereis diversicolor.J. mar. biol. Ass. U.K. 35, 81–104.

    Google Scholar 

  • —— 1957. A note on the tolerance of low salinities by nereid polychaetes and its relation to temperature and reproductive habit.Annls Biol. 33, 93–107.

    Google Scholar 

  • -- 1959. Physiological and ecological problems of brackish waters.In: Marine biology. Proc. 20th Annual Biol. Coll., Oregon State College, 59–69.

  • Sumner, F. B., Louderback, G. D., Schmitt, W. L. &Johnston, E. C. A., 1914. A report upon the physical conditions in San Francisco Bay.Univ. Calif. Publ. Zool. 14, 198 pp.

  • Topping, F. L. &Fuller, J. L., 1942. The accommodation of some marine invertebrates to reduced osmotic pressures.Biol. Bull. mar. biol. Lab., Woods Hole 82, 372–384.

    Google Scholar 

  • Vollenweider, R. A., 1950. Ökologische Untersuchungen von planktischen Algen auf experimenteller Grundlage.Schweiz. Z. Hydrol. 12, 1–75.

    Google Scholar 

  • Weil, E. &Pantin, C. F. A., 1931. The adaption ofGunda ulvae to salinity. 2. The water exchange.J. exp. Biol. 8, 73–81.

    Google Scholar 

  • Williams, R. B., 1962. The ecology of diatom populations in a Georgia salt marsh. Cambridge, Mass., Harvard Univ. D. Thesis.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Herrn Professor Dr.Adolf Bückmann zum 65. Geburtstag am 17. 1. 1965 in Verehrung gewidmet.

Ins Deutsche übertragene, veränderte Fassung eines Vortrages, welcher am 1. April 1964 auf Jekyll Island, Georgia (USA), gehalten worden ist.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinne, O. Physiologische und ökologische Aspekte des Lebens in Ästuarien. Helgolander Wiss. Meeresunters 11, 131–156 (1964). https://doi.org/10.1007/BF01612365

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01612365