Skip to main content
  • Published:

In vitro inhibition ofRhodotorula minuta by a variant of the marine bacterium,Pseudomonas piscicida

In-vitro-Inhibierung vonRhodotorula minuta durch eine Variante des marinen BakteriumsPseudomonas piscicida

Kurzfassung

Die Wirkung verschieden behandelter zellfreier Filtrate einer Variante des marinen BakteriumsPseudomonas piscicida, die antibiotische Wirksamkeit gegen die im marinen Milieu vorkommende HefeRhodotorula minuta besitzt, wurde untersucht. Maximale Filtrat-Aktivität wurde von 4 Tage alten Bakterienkulturen (Pepton-Flüssigkeits-Schüttelkulturen) bei Verwendung von Hefezellen als Testorganismen erhalten, welche die logarithmische Wuchsphase noch nicht erreicht hatten. Die antibiotische Wirksamkeit der Filtrate ging bei pH 4 verloren. Höhere pH-Werte sowie Temperaturen bis zu 100°C hatten keine Wirkung auf die Aktivität des hindernden Prinzips. Bei Dialyse der Bakterienfiltrate gegen Peptonbouillon beziehungsweise gegen ein zellfreies Filtrat einer anderen Pseudomonaskultur zeigte sich, daß dialysiertes Material wie Dialysierrückstand aktiv waren. Verminderte Aktivität trat in definierten Medien auf. Wurde das Filtrat zwei „natürlichen“ marinen Adsorbantien „carbonate rock leching“ und getrockneten Amphipoden ausgesetzt, so war die antibiotische Aktivität reduziert. Es werden Beweise für die in-situ-Wirkung der Pseudomonaden-Antihefen-Aktivität auf die Biologie von Populationen Hefen und Bakterien in Mikrohabitaten vorgelegt.

Summary

1. Maximal activity of cell-free filtrates of the antiyeast bacterium,Pseudomonas piscicida, againstRhodotorula minuta was obtained from four-day shaken peptone broth cultures. Yeast cells were taken prior to their logarithmic growth phase.

2. Antiyeast activity was lost when filtrates were adjusted to pH 4.0, while higher pH values, as well as temperatures up to 100° C for 30 minutes, had no effect on inhibition.

3. The principal inhibitory effect is that of interference with bud formation and/or bud separation from the parent cell. Yeast cells in an active stage of growth and metabolism are materially affected by the substance(s) present in the bacterial filtrate.

4. Both dialyzates and dialyzants were active when filtrates were dialyzed against peptone broth or another pseudomonad culture. Decreased activity was noted when the bacterium was grown in chemically defined media.

5. Exposure of filtrates to two “natural” marine adsorbants, carbonate rock leachings and dried amphipod material, resulted in lessened inhibitory properties.

6. Chemical characterization of the active principal in filtrates of the bacterium is inconclusive. While experimental evidence (cation exchange resin) suggests that the inhibitor may be a small molecular weight base, disc assay of a selected group of ammonia and amine-containing compounds gave negative results.

7. Ecological data indicate in situ action of the antiyeast material in discrete marine environments.

Literature cited

  • Buck, J. D., Meyers, S. P. &Kamp, K. M., 1962. Marine bacteria with antiyeast activity.Science, N. Y. 138, 1339–1340.

    Google Scholar 

  • —— &Leifson, E., 1963.Pseudomonas (Flavabacterium) piscicida Bein comb. nov.J. Bact. 86, 1125–1126.

    Google Scholar 

  • —— &Meyers, S. P., 1963. Inhibition of yeasts by a marine bacterium.J. Bact. 85, 1132–1135.

    Google Scholar 

  • —— &Meyers, S. P., 1965. Antiyeast activity in the marine environment. 1. Ecological considerations.Limnol. Oceanogr. 10, 385–391.

    Google Scholar 

  • —— &Meyers, S. P., 1966. Growth and phosphate requirement ofPseudomonas piscicida and related antiyeast pseudomonads.Bull. mar. Sci. 16, 93–101.

    Google Scholar 

  • Chance, H. L., 1952. Crystal violet as a nuclear stain forGaffkya tetragena.Stain Technol. 27, 253–258.

    Google Scholar 

  • Fogg, G. E., 1964. Environmental conditions and the pattern of metabolism in algae.In: Algae and man. Ed. by D. F. Jackson. Plenum pr., New York, 77–85.

    Google Scholar 

  • Greenfield, L. J., 1963. Metabolism and concentration of calcium and magnesium and precipitation of calcium carbonate by a marine bacterium.Ann. N. Y. Acad. Sci. 109 (1), 23–45.

    Google Scholar 

  • Lyman, J. &Fleming, R. H., 1940. Composition of sea water.J. mar. Res. 3, 134–146.

    Google Scholar 

  • Meyers, S. P. &Greenfield, L. J., 1963. Nutrition ofFlavobacterium piscicida Bein.Prog. Rep. Marine Lab., Univ. of Miami, Fla.

  • Nieman, C., 1954. Influence of trace amounts of fatty acids on the growth of microorganisms.Bact. Rev. 18, 147–163.

    Google Scholar 

  • Novak, A. F., Fisher, M. J., Fore, S. P. &Dupuy, H. P., 1964. Antimycotic activity of some fatty acid derivatives.J. Am. Oil Chem. Soc. 41, 503–505.

    Google Scholar 

  • Sieburth, J. M., 1960. Acrylic acid, an “antibiotic” principle inPhaeocystis blooms in Antarctic waters.Science, N. Y. 132, 676–677.

    Google Scholar 

  • Watt, L. S., Adams, J. N. &Payne, W. J., 1962. Cytological and physiological effects of sodium caprylate onCandida albicans.Antibiotics Chemother. 12, 173–181.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution No. 685 from the Institute of Marine Science, University of Miami, Miami, Florida. Supported in part by research grants G-16 146 from the National Science Foundation and AI-01 932 from the National Institute of Health, USA.

A portion of this material was submitted in partial fulfilment of the requirements for the Ph. D. degree at the University of Miami, Coral Gables, Florida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buck, J.D., Meyers, S.P. In vitro inhibition ofRhodotorula minuta by a variant of the marine bacterium,Pseudomonas piscicida . Helgolander Wiss. Meeresunters 13, 171–180 (1966). https://doi.org/10.1007/BF01612662

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01612662

Keywords