Skip to main content

Bewuchsuntersuchungen auf Natursteinsubstraten im Gezeitenbereich des Nordsylter Wattenmeeres: Sessile und hemisessile Tiere

Fouling studies on natural-stone substrates in the tidal zone of the North Sylt wadden sea: Sessile and hemisessile animals

Abstract

Six different types of test substrates, arranged in order of texture from smooth (Solnhofen limestone, Bunter sandstone, and basalt) to rough surfaces (Middle Triassic limestone, granite, and basaltic lava), were exposed in tidal zone of the wadden sea near the harbour of List (Island of Sylt, North Sea). The test substrates were fixed to panels at the midtide to high-water level, the midtide to low-water level, and 75 cm below the latter (sublittoral level). Animal settlement was primarily influenced by abiotic factors at the two higher levels. In the sublittoral zone, however, influences of biotic factors (competitors and predators) predominated. Therefore, the physical quality of the chosen substrates more decisively affected the growth of settling animals above the midtide to low-water mark than in the deeper zone. At the midtide to high-water levelBalanus balanoides only settled on the rough surface of the Middle Triassic limestone and in the troughs of the Bunter sandstone; barnacles attached to the even surface of the latter, were destroyed by wave beating. They died on the rough surface of the dark-coloured granite, when this stone was warmed during low-water. At the midtide to low-water level, the barnacles survived best on the rough surface of the Middle Triassic limestone and the granite. Only the larvae ofB. crenatus andB. improvisus preferred to settle on the even surface of the Bunter sandstone and the basalt; but there they died from wave beating or desiccation. The surface of the basaltic lava, formed by sharp-edged pores, was unsuitable for settling of barnacles. Colonies of Hydrozoa covered each substrate with a somewhat rough surface structure, even the basaltic lava. At the sublittoral level, differences in settling between the single substrates disappeared more and more. Nevertheless, the three species of barnacles showed the same preferences in settling, as they did at the higher levels. In August,Asterias rubens destroyed all barnacles and thus restricted the lower limit of barnacle settlement at the low-water mark. The distribution of epibiotic organisms is dependent upon the density of their “living substrates”, directly attached to the stone surfaces. During the short time of their growth, hemisessile young,Mytilus edulis settled on thready forms like algae, or on raised areas like the top of barnacle shells. Therefore, young mussels could be found on stones, that already carried a compact cover ofEnteromorpha sp. or a dense settlement of adult barnacles. The polychaetePolydora ciliata rarely burrowed directly into stony substrates (Middle Triassic limestone, Solnhofen limestone). It settled primarily between barnacle shells where it was sheltered from wave beating and at the same time profited from the current produced by the filter-feeding organs of the barnacles. The density of this polychaete was directly proportional to the density of the barnacles. AfterA. rubens had destroyed the barnacles in the sublittoral zone,P. ciliata disappeared too. At the low-water mark, however, theP. ciliata population between living and active barnacles increased. Hence, the lower limit ofP. ciliata — as those of barnacles and mussels — was fixed by this predator.

Zitierte literatur

  1. Barnes, H. & Powell, H. T., 1953. The growth ofBalanus balanoides (L.) andB. crenatus Brug. under varying conditions of submersion. J. mar. biol. Ass. U. K.32, 107–127.

    Google Scholar 

  2. Bayne, B. L., 1964. Primary and secondary settlement inMytilus edulis L.. J. Anim. Ecol.33, (5) 3–523.

    Google Scholar 

  3. Caspers, H., 1949. Die Bewuchsgemeinschaft an der Landungsbrücke der Nordseeinsel Spiekeroog und das Formproblem vonBalanus. Zool. Jb. (Systematik)78, 237–322.

    Google Scholar 

  4. Crisp, D. J., 1958. Distribution of intertidal organisms. J. mar. biol. Ass. U. K.37, 157–208.

    Google Scholar 

  5. —— 1964. Surface chemistry, a factor in the settlement of marine invertebrate larvae. Bot. Gothoburg.3, 51–65.

    Google Scholar 

  6. —— & Meadows, P. S., 1962. The chemical basis of gregariousness in cirripedes. Proc. R. Soc. (B)156, 500–520.

    Google Scholar 

  7. —— —— 1963. Adsorbes layers; the stimulus to settlement in barnacles. Proc. R. Soc. (B)158, 364–387.

    Google Scholar 

  8. —— & Southward, A. J. 1958. Distribution of intertidal organisms. J. mar. biol. Ass. U. K.37, 157–208.

    Google Scholar 

  9. Daro, M. H., 1969. Etude écologique d'un brise-lames de la côte belge. I. Description et zonation des organismes. Annls Soc. r. zool. Belg.99, 111–152.

    Google Scholar 

  10. —— & Polk, P., 1973. The autecology ofPolydora ciliata along the Belgian coast. Neth. J. Sea Res.6, 130–140.

    Google Scholar 

  11. Hatton, H., 1938. Essais de bionomie explicative sur quelque espèces intercodiales d'algues et d'animeaux. Annls Inst. océanogr. Monaco17, 241–248.

    Google Scholar 

  12. Hempel, C., 1957. Zur Ökologie einiger Spinoiden (Polychaeta sedentaria) der deutschen Küsten. Kieler Meeresforsch.13, 275–288.

    Google Scholar 

  13. —— 1959. Über das Festsetzen der Larven und die Bohrtätigkeit der Jugendstadien vonPolydora ciliata (Polychaeta sedentaria). Helgoländer wiss. Meeresunters.7, 82–92.

    Google Scholar 

  14. Knight-Jones, E. W., 1953. Laboratory experiments on gregariousness during setting inBalanus balanoides and other barnacles. J. exp. Biol.30, 584–598.

    Google Scholar 

  15. —— 1955. The gregarious setting of the barnacles as a measure of systematic affinity. Nature, Lond.174, 1–266.

    Google Scholar 

  16. —— & Stevenson, J. P. 1950. Gregariousness during settlement in the barnacleElminius modestus (Darwin). J. mar. biol. Ass. U. K.29, 281–297.

    Google Scholar 

  17. Krumbein, W. E. & van der Pers, J. N. C., 1974. Diving investigations on biodeterioration by sea-urchins in the rocky sublittoral of Helgoland. Helgoländer wiss. Meeresunters.26, 1–17.

    Google Scholar 

  18. Kühl, H., 1951. Vergleichende biologische Untersuchungen über den Hafenbewuchs. Zool. Anz. (Suppl.)15, 233–244.

    Google Scholar 

  19. Luther, G., 1976a. Bewuchsuntersuchungen auf Natursteinsubstraten im Gezeitenbereich des Nordsylter Wattenmeeres. Helgoländer wiss. Meeresunters.28, 145–166.

    Google Scholar 

  20. —— 1976b. Bewuchsuntersuchungen auf Natursteinsubstraten im Gezeitenbereich des Nordsylter Wattenmeeres: Algen. Helgoländer wiss. Meeresunters.28, 318–351.

    Google Scholar 

  21. Moore, H. B., 1934. The biology ofBalanus, I. J. mar. biol. Ass. U. K.19, 851–868.

    Google Scholar 

  22. —— & Kitching, J. A., 1939. The biology ofChthamalus stellatus (Poli). J. mar. biol. Ass. U. K.23, 521–541.

    Google Scholar 

  23. Paine, R. T., 1974. Intertidal community structure. Experimental studies on the relationship between a dominant competitor and its principal predator. Oecologia15, 93–120.

    Google Scholar 

  24. Pomerat, C. M. & Weiss, C. M., 1946. The influence of texture and composition of surface on the attachment of sedentary marine organisms. Biol. Bull. mar. biol. Lab., Woods Hole91, 57–65.

    Google Scholar 

  25. Pyefinch, K. A., 1948. Notes on the biology of cirripedes. J. mar. biol. Ass. U. K.27, 464–503.

    Google Scholar 

  26. Riedl, R., 1971. Water movement, general aspects of water movement, animals. In: Marine ecology. Ed. by O. Kinne. Wiley-Interscience, London,1 (2), 1123–1156.

    Google Scholar 

  27. Schäfer, W., 1952. Biologische Bedeutung der Ortswahl bei Balaniden-Larven. Senckenbergiana33, 235–246.

    Google Scholar 

  28. —— 1962. Aktuo-Paläontologie nach Studien in der Nordsee. Kramer, Frankfurt a. M., 666 pp.

    Google Scholar 

  29. Schütz, L. & Kinne, O., 1955. Über die Mikro- und Makrofauma der Holzpfähle des Nord-Ostseekanals und der Kieler Förde. Kieler Meeresforsch.11, 110–135.

    Google Scholar 

  30. Segal, E., 1970. Light, animals. In: Marine ecology. Ed. by O. Kinne. Wiley-Interscience, London,1 (1), 159–211.

    Google Scholar 

  31. Verwey, J., 1951. Het Ontstaan van Mosselbanken. Naturkunde, Koniglijke Nederl. Akad. van Wetenschappen8, DI, LX.

  32. Visscher, J. P., 1928. Reaction of the cyprid-larvae of barnacles at the time of attachment. Biol. Bull. mar. biol. Lab., Woods Hole54, 327–336.

    Google Scholar 

  33. Weiss, C. M., 1947. The effect of illumination and stage on tide on the attachment of barnacles cyprids. Biol. Bull. mar. biol. Lab., Woods Hole93, 240–249.

    Google Scholar 

  34. Wohlenberg, E., 1937. Die Wattenmeer-Lebensgemeinschaften im Königshafen von Sylt. Helgoländer wiss. Meeresunters.1, 1–92.

    Google Scholar 

  35. Wolf, P. de, 1973. Ecological observations on the mechanisms of dispersal of barnacle larvae during planctonic live and settling. Neth. J. Sea Res.6, 1–129.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

Herrn Professor W. E. Ankel zur Vollendung des 80. Lebensjahres in Dankbarkeit gewidmet.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Luther, G. Bewuchsuntersuchungen auf Natursteinsubstraten im Gezeitenbereich des Nordsylter Wattenmeeres: Sessile und hemisessile Tiere. Helgolander Wiss. Meeresunters 29, 375–403 (1977). https://doi.org/10.1007/BF01614272

Download citation