Skip to main content
  • Published:

Structure and function of the locomotory system ofPolyorchis montereyensis (Cnidaria, Hydrozoa)

Struktur und Funktion des lokomotorischen Systems vonPolyorchis montereyensis (Cnidaria, Hydrozoa)

Kurzfassung

Mit Hilfe histologischer und kinematographischer Methoden wurden Bau und Funktion des lokomotorischen Systems der AnthomedusePolyorchis montereyensis Skogsberg analysiert. Die Schwimmbewegungen resultieren aus der antagonistischen Wirkung der Muskulatur der Subumbrella und der elastischen Mesogloea. Struktur, Anordnung, Verteilung und Verankerung der Muskelzellen werden beschrieben. Die Körperschicht der Mesogloea besteht aus 5 Komponenten mit Skelettfunktion: der Matrix der Schirmmesogloea, einem System von Muskelfasern, der Stützlamelle, acht adradialen Verbindungssträngen von stark deformierbarer, fibrillenloser Mesogloea und der Mesogloea des Velums. Die Fribrillen und Verbindungsstränge der Mesogloea bewirken, daß die Schirmglocke während der Kontraktion deformiert werden kann. Die Funktion des Velums sowie die kontinuierlichen Veränderungen der Glocke in bezug auf Form und Lage während des Schwimmvorgangs, insbesondere die Geschwindigkeit der Kontraktion, des Wasserausstoßes und der Fortbewegung bei Individuen verschiedener Größe, wurden eingehend untersucht. Kleinere Medusen schwimmen relativ schneller als größere, was hauptsächlich auf stärkere Kontraktionen des Velums zurückzuführen ist.

Summary

1. The structure and function of the locomotory system of the anthomedusanPolyorchis montereyensis Skogsberg were studied in detail. Anatomical investigations were carried out primarily on fresh or formalin fixed specimens; histology was done on specimens fixed in Bouin's fluid. Functional analyses were based largely on photography and cinematography.

2. Swimming inP. montereyensis involves the alternating antagonistic action of the subumbrellar swimming muscles and the elastic mesoglea.

3. The swimming muscle consists of striated contractile elements arranged circularly in four discontinuous subumbrellar sheets and a sheet on the subumbrellar side of the velum. There is also a sheet of radially arranged fibers on the exumbrellar side of the velum. The four subumbrellar sheets are anchored to the bell along the perand interradii.

4. The mesogleal skeleton consists of five components: (a) the matrix of the bell mesoglea, (b) optically visible fibers that traverse the bell from gastrodermal lamella to exumbrella, (c) the basement membrane or supporting lamella, (d) a system of joints, and (e) the velar mesoglea.

5. The morphology, orientation, and distribution of the mesogleal fibers suggest that their major role is maintaining the radial integrity of the bell during deformation. The amount of stretch in a region of the bell wall during contraction is inversely proportional to the number of fibers per unit area there. In regions of the bell which are not deformed during contraction fibers are sparse or absent.

6. Mesogleal volume remains constant during swimming. Locally the mesoglea is subjected to forces of stretch and compression, but the critical element in narrowing the bell involves bending or folding the mesoglea around a series of structural joints. The fulcrum of these joints is anchored to the exumbrella by concentrations of mesogleal fibers. The joints consist of eight adradial regions of highly deformable mesoglea lacking visible fibers. The regions are triangular in cross section and are separated from the remainder of the mesoglea (98–99 % of the total) by the gastrodermal lamella. A circular apical joint is also present.

7. Sequential changes in shape and position of the bell relative to a fixed grid during contraction and recovery were measured in order to determine such parameters of swimming as rate of contraction, rate of expulsion of water, change in bell velocity during contraction and recovery, momentum, etc.

8. The function of the velum was determined by cinematographic analysis of swimming animals both before and after removal of the velum. In normal swimming the velum serves mainly to constrict the aperture of the bell, thus increasing the velocity of expelled water, and hence increasing the force driving the medusa foward. Medusae swam with a greatly decreased velocity after velum removal.

9. Turning is accomplished primarily by asymmetrical contraction of the exumbrellar velar radial muscles, whereby the velar aperture is displaced to one side, water is expelled obliquely, and the bell turns toward that same side. The ability to turn was lost after velum removal.

10. Studies of the relationship between individual size and the various parameters of swimming inP. montereyensis show that: (a) the duration of the contraction phase of the swimming beat is roughly proportional to the square root of the subumbrellar circumference (or bell height); (b) smaller individuals swim faster relative to their bell height than do larger ones; (c) the velum is relatively better developed in small animals and plays a proportionately more important role during swimming.

Literature cited

  • Agassiz, L., 1862. Contributions to the natural history of the United States of North America4, 1–380.

  • Alexander, R. M., 1964. Visco-elastic properties of the mesoglea of jellyfish. J. exp. Biol.41, 363–369.

    Google Scholar 

  • Alvarado, S., 1923. Sobre la estructura de la substancia fundamental de la mesogloea de las hidromedusas. Boln Soc. esp. Hist. nat.23, 167–173.

    Google Scholar 

  • Bauer, V., 1927. Die Schwimmbewegungen der Quallen und ihre reflektorische Regulierung. Z. vergl. Physiol.5, 37–69.

    Google Scholar 

  • Bouillon, J., Castiaux, P. &Vandermeerssche, G., 1958. Musculature de la MéduseLimnocnida tanganyicae. Bull. Microsc appl. (Ser. 2)8, 81–87.

    Google Scholar 

  • —— &Vandermeerssche, G., 1957. Structure et nature de la mesoglee des hydro- et scyphomeduses. Annls Soc. r. zool. Belg.87, 9–25.

    Google Scholar 

  • Chapman, D. M., 1968. A new type of muscle cell from the subumbrella ofObelia. J. mar. biol. Ass. U.K.48, 667–688.

    Google Scholar 

  • —— &Robson, E. A. 1962. Muscle in coelenterates. Revue can. Biol.21, 267–278.

    Google Scholar 

  • Chapman, G., 1953a. Studies of the mesoglea of coelenterates. I. Histology and chemical properties. Q. Jl microsc. Sci.94, 155–176.

    Google Scholar 

  • —— 1953b. Studies of the mesoglea of coelenterates. II. Physical properties. J. exp. Biol.30, 440–451.

    Google Scholar 

  • —— 1958. The hydrostatic skeleton of the invertebrates. Biol. Rev.33, 338–371.

    Google Scholar 

  • —— 1959. The mesoglea ofPelagia noctiluca. Q. Jl microsc. Sci.100, 599–610.

    Google Scholar 

  • —— 1966. The structure and function of the mesoglea. In: The cnidaria and their evolution. Ed. byW. J. Rees. Academic Press, New York, 147–168.

    Google Scholar 

  • Denton, E. J., 1963. The buoyancy mechanism of sea creatures. Endeavour22, 85–87.

    Google Scholar 

  • Eakin, R. M. &Westfall, J., 1962. Fine structure of photoreceptors in the hydromedusan,Polyorchis penicillatus. Proc. natn Acad. Sci. U.S.A.48, 826–833.

    Google Scholar 

  • Fraser, L. A., 1962. The histolgy of the musculature ofGonionemus. Trans. Am. microsc. Soc.81, 257–262.

    Google Scholar 

  • Galigher, A. E. &Kozloff, E. N., 1964. Essentials of practical microtechnique. Lea & Febiger, Philadelphia, 484 pp.

    Google Scholar 

  • Gosline, J., 1969. A macromolecular model of the mesoglea of a sea anemone. Am. Zool.9, 1115.

    Google Scholar 

  • Gutmann, W. F., 1965. Rückstoß und Ruderschlag der Quallen. Natur Mus.95, 455–464.

    Google Scholar 

  • —— 1966a. Zu Bau und Leistung von Tierkonstruktionen. 2. Die Glocke vonRhizostoma octopus. Natur Mus.96, 103–108.

    Google Scholar 

  • —— 1966b. Zu Bau und Leistung von Tierkonstruktionen. 3. Die Lage der inneren Organe in rückstoßschwimmenden Tieren. Natur Mus.96, 195–204.

    Google Scholar 

  • —— 1966c. Zu Bau und Leistung von Tierkonstruktionen 4–6. Abh. senckenb. naturforsch. Ges.510, 1–106.

    Google Scholar 

  • Hertwig, O. &Hertwig, R., 1878. Das Nervensystem und die Sinnesorgane der Medusen. Vogle, Leipzig.

    Google Scholar 

  • —— —— 1880. Der Organismus der Medusen und seine Stellung zur Keimblättertheorie. Denkschr. med.-naturw. Ges. Jena2, 1–70.

    Google Scholar 

  • Hyman, L. H., 1940a. The invertebrates: Protozoa through ctenophora. McGraw-Hill, New York.1, 1–726.

    Google Scholar 

  • —— 1940b. Observations and experiments on the physiology of medusae. Biol. Bull. mar. biol. Lab., Woods Hole79, 282–296.

    Google Scholar 

  • Kawaguti, S. &Tadatoshi, H., 1963. Electron microscopic studies on striated and smooth muscles of an anthomedusan,Spirocodon saltatrix. Biol. J. Okayama Univ.9, 127–139.

    Google Scholar 

  • Krasinska, S., 1914. Zur Histologie der Medusen. Z. wiss. Zool.109, 256–348.

    Google Scholar 

  • Little, E. V., 1914. The structure of the ocelli ofPolyorchis penicillatus. Univ. Calif. Publs Zool.11, 307–328.

    Google Scholar 

  • Mackay, W. C., 1969. Sulfate regulation in jellyfish. Comp. Biochem. Physiol.30, 481–488.

    Google Scholar 

  • Mackie, G. O., 1964. Analysis of locomotion in a siphonophore colony. Proc. R. Soc. (B)159, 366–391.

    Google Scholar 

  • —— &Mackie, G. V., 1967. Mesogleal ultrastructure and reversible opacity in a transparent siphonophore. Vie Milieu (A)18, 47–71.

    Google Scholar 

  • —— &Passano, L. M., 1968. Epithelial conduction in hydromedusae. J. gen. Physiol.52, 600–621.

    Google Scholar 

  • Nagao, Z., 1963. The early development of the anthomedusa,Polyorchis karafutoensis Kishinouye. Annotnes zool. jap.36, 187–193.

    Google Scholar 

  • Piez, K. A. &Gross, J., 1959. The amino acid composition of some invertebrate and vertebrate collagens. Biochim. biophys. Acta34, 24–39.

    Google Scholar 

  • Romanes, G. J., 1885. Jelly-fish, star-fish and sea urchins: a research on primitive nervous systems. Appleton, New York.

    Google Scholar 

  • Skogsberg, T., 1948. A systematic study of the family Polyorchidae. Proc. Calif. Acad. Sci.26, 101–124.

    Google Scholar 

  • Tretyakoff, D. K., 1937. Russk. Arkh. Anat. Gistol. Émbriol.17, 279.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gladfelter, W.B. Structure and function of the locomotory system ofPolyorchis montereyensis (Cnidaria, Hydrozoa). Helgolander Wiss. Meeresunters 23, 38–79 (1972). https://doi.org/10.1007/BF01616310

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01616310

Keywords