Skip to main content
  • Published:

Respiratory metabolism ofIdotea balthica (Crustacea, Isopoda) in relation to environmental variables, acclimation processes and moulting

Der respiratorische Stoffwechsel vonIdotea balthica (Crustacea, Isopoda) in Beziehung zu Umweltfaktoren, Anpassungsvorgängen und zum Häutungsgeschehen

Kurzfassung

Der Atmungsstoffwechsel der euryhalinen MeeresasselIdotea balthica (Pallas) wurde in Abhängigkeit von der Körpergröße, der Temperatur und dem Salzgehalt untersucht. Die auf elektrochemischem Weg durchgeführten Messungen des Sauerstoffbedarfs ergaben eine nahezu gleichmäßige Erhöhung der Stoffwechselintensität mit zunehmender Temperatur. Gegenüber dem Ruheumsatz steigt der Aktivitätsstoffwechsel bei allen getesteten Temperaturen (5°, 10°, 15°, 20° C) ungefähr um das 3- bis 4fache. Die größenbezogenen Stoffwechselrelationen zeigen eine deutliche Abhängigkeit von der Salinität. Der zeitliche Verlauf der Anpassungsvorgänge nach einem Temperatur- und Salinitätsstreß wurde bis zum Erreichen eines neuen, gleichbleibenden Stoffwechselniveaus verfolgt. Die Adaptation nach einem plötzlichen Temperaturwechsel (Überführung von 15° in 5° C und von 5° in 15° C) ist innerhalb weniger Stunden vollzogen. Ein abrupter Salinitätswechsel von 30 in 10 ‰ hat einen wesentlich längeren und mit einem erheblichen Stoffwechselanstieg verknüpften Anpassungsvorgang zur Folge als ein Salzgehaltssprung in umgekehrte Richtung. Ferner wurden die Änderungen des Sauerstoffbedarfs während der Häutung, die sich in zwei räumlich und zeitlich getrennten Abschnitten vollzieht, untersucht. Der Sauerstoffverbrauch adulter Individuen ist über einen Zeitraum von ca. 40–80 Studen (bei 15° C) erhöht und weist während des Abwurfs des alten Exoskeletts einen zweigipfligen Anstieg auf, der etwa das Dreifache der Normalwerte erreicht. Verschiedene physiologische Aspekte werden unter Einbeziehung ökologischer Gesichtspunkte, die sich insbesondere auf das vorwiegend sublitorale Vorkommen vonI. balthica beziehen, erörtert.

Summary

1. The oxygen uptake of the euryhaline isopodIdotea balthica (Pallas), obtained from the Baltic Sea, was determined by means of flow-through polarography. The rates of respiration were studied in relation to body size, temperature and salinity. Measurements conducted at 5°, 10°, 15° and 20° C in 10 ‰ salinity revealed an almost continuous increase of metabolic rates with rising temperatures. The regression coefficients, calculated for size-dependent respiration, range from about 0.7 to 0.6. Compared with these data, a significantly higher regression coefficient was obtained from determinations made at 15° C and 30 ‰. The rates of active metabolism in adult individuals were shown to exceed standard metabolism by approximately 3 to 4 times at all temperatures tested.

2. The compensatory responses following thermal and salinity stress have been recorded in relation to the time courses of acclimation and the magnitudes of the physiological adjustments. Sudden alterations of temperature lead to new steady states of metabolic rates within 3 hours following a change from 15° to 5° C and approximately within 15 hours following a transfer from 5° to 15° C. At 15° C, an abrupt salinity change from 10 to 30 ‰ and vice versa requires a transition period between successive acclimation states of 6 hours (10 to 30 ‰) and about 30 hours (30 to 10 ‰), respectively. The transfer from the dilute to the more concentrated medium is accompanied by slightly reduced oxygen-uptake rates, whereas the transfer in the opposite direction leads to a marked temporary increase of respiration.

3. The time course and intensity of metabolic changes during moulting were also examined. The exuviations of the posterior and anterior body parts occur temporally separated and are reflected by two peaks of increased oxygen uptake, amounting to approximately three times the standard rates. In the interphase between the successive exuviations an elevated respiratory level is maintained. In adult specimens, the whole phase of increased metabolic requirements during moulting comprises a period from 40 up to 80 hours at 15° C.

4. The metabolic requirements and acclimatory responses ofIdotea balthica are considered in relation to its subtidal habitat and compared with compensatory reactions occurring in some intertidal and supratidal invertebrates. Further physiological and ecological implications are discussed.

Literature cited

  • Barnes, H. &Barnes, M., 1963. The relation of water uptake and oxygen consumption of the body tissues to the molting cycle inBalanus balanoides (L.). Crustaceana6, 62–68.

    Google Scholar 

  • —— —— &Finlayson, D. M., 1963. The seasonal changes in body weight, biochemical composition, and oxygen uptake of two common boreo-arctic cirripedes,Balanus balanoides (L.) andB. balanus (L.)da Costa. J. mar. biol. Ass. U.K.43, 185–211.

    Google Scholar 

  • Bliss, D. E., 1953. Endocrine control of metabolism in the land crab,Gecarcinus lateralis (Fréminville). I. Differences in the respiratory metabolism of sinus glandless and eyestalkless crabs. Biol. Bull. mar biol. Lab., Woods Hole104, 275–296.

    Google Scholar 

  • Bulnheim, H.-P., 1972. Vergleichende Untersuchungen zur Atmungsphysiologie euryhaliner Gammariden unter besonderer Berücksichtigung der Salzgehaltsanpassung. Helgoländer wiss. Meeresunters.23, 485–534.

    Google Scholar 

  • Costlow, J. D., Jr. &Bookhout, C. G., 1958. Molting and respiration inBalanus improvisus var.denticulata Broch. Physiol. Zoöl.31, 271–280.

    Google Scholar 

  • Dehnel, P. A., 1960. Effect of temperature and salinity on the oxygen consumption of two intertidal crabs. Biol. Bull. mar. biol. Lab., Woods Hole118, 215–249.

    Google Scholar 

  • Drach, P., 1939. Mue et cycle d'intermue chez les Crustacés Décapodes. Annls Inst. océanogr., Monaco19, 103–392.

    Google Scholar 

  • Fox, H. M. &Simmonds, B. G., 1933. Metabolic rates of aquatic arthropods from different habitats. J. exp. Biol.10, 67–74.

    Google Scholar 

  • Fry, F. E. J., 1957. The aquatic respiration of fish. In: The physiology of fishes. Ed. byM. E. Brown. Acad. Press, New York1, 1–63.

    Google Scholar 

  • Furch, K., 1972. Der Einfluß einer Vorbehandlung mit konstanten und wechselnden Temperaturen auf die Hitzeresistenz vonGammarus salinus undIdotea balthica. Mar. Biol.15, 12–34.

    Google Scholar 

  • Gross, W. J., 1957. An analysis of response to osmotic stress in selected decapod Crustacea. Biol. Bull. mar. biol. Lab., Woods Hole112, 43–62.

    Google Scholar 

  • Gruner, H.-E., 1965. Krebstiere oder Crustacea. V. Isopoda. Tierwelt Dtl.51 (1), 1–149.

    Google Scholar 

  • Heinemann, F., 1964. Der Gewebestoffwechsel einheimischer Dekapoden und seine Bedeutung für ihre Biologie und Ökologie. Zool. Jb. (Abt. allg. Zool. Physiol. Tiere)71, 89–116.

    Google Scholar 

  • Hemmingsen, A. M., 1960. Energy metabolism as related to body size and respiration surfaces, and its evolution. Rep. Steno meml. Hosp.9 (2), 1–110.

    Google Scholar 

  • Hørlyck, V., 1973a. Seasonal and diel variation in the rhythmicity ofIdotea baltica (Pallas) andIdotea granulosa Rathke. Ophelia12, 117–127.

    Google Scholar 

  • —— 1973b. The osmoregulatory ability in three species of the genusIdotea (Isopoda, Crustacea). Ophelia12, 129–140.

    Google Scholar 

  • Jansson, B.-O. &Källander, C., 1968. On the diurnal activity of some littoral peracarid crustaceans in the Baltic Sea. J. exp. mar. Biol. Ecol.2, 24–36.

    Google Scholar 

  • Jones, M. B., 1974. Survival and oxygen consumption in various salinities of three species ofIdotea (Crustacea, Isopoda) from different habitats. Comp. Biochem. Physiol.48 A, 501 to 506.

    Google Scholar 

  • Khmeleva, N. N., 1973. Energy metabolism ofIdotea baltica basteri (Aud.). (In Russian.) In: Energy metabolism of aquatic animals. The Academy of Science of the USSR, Publ. House “Nauka”, Moscow, 5–27.

    Google Scholar 

  • Kinne, O., 1971. Salinity: Animals — Invertebrates. In: Marine Ecology. Ed. byO. Kinne. Wiley — Interscience, London1 (2), 821–995.

    Google Scholar 

  • Lucu, Č., Siebers, D. &Sperling, K.-R., 1973. Comparison of osmoregulation between Adriatic and North seaCarcinus. Mar. Biol.22, 85–95.

    Google Scholar 

  • McFarland, W. N., &Pickens, P. E., 1965. The effects of season, temperature and salinity on standard and active oxygen consumption of the grass shrimp,Palaemonetes vulgaris (Say). Can. J. Zool.43, 571–585.

    Google Scholar 

  • Naylor, E., 1955. The diet and feeding mechanism ofIdotea. J. mar. biol. Ass. U.K.34, 347–355.

    Google Scholar 

  • Newell, R. C., 1969. Effect of fluctuations in temperature on the metabolism of intertidal invertebrates. Am. Zool.9, 293–307.

    Google Scholar 

  • —— 1973. Factors affecting the respiration of intertidal invertebrates. Am. Zool.13, 513–528.

    Google Scholar 

  • —— &Pye, V. I., 1974. Factors affecting oxygen consumption in the woodlouseProcellio scaber Latr. Oecologia16, 31–51.

    Google Scholar 

  • Oertzen, J.-A. von, 1965. Stoffwechselaktivitätsmessungen (Sauerstoffverbrauch) an Invertebraten der Fucuszone aus der mittleren Ostsee. Zool. Anz.175, 166–173.

    Google Scholar 

  • Paranjape, M. A., 1967. Molting and respiration of euphausiids. J. Fish. Res. Bd Can.24, 1229–1240.

    Google Scholar 

  • Passano, L. M., 1960. Molting and its control. In: Physiology of Crustacea. Ed. byT. H. Waterman. Acad. Press, New York1, 473–536.

    Google Scholar 

  • Potts, W. T. W. &Parry, G., 1964. Osmotic and ionic regulation in animals. Pergamon Press, Oxford, 423 pp.

    Google Scholar 

  • Precht, H., Christophersen, J., Hensel, H. &Larcher, W., 1973. Temperature and life. Springer, Heidelberg, 799 pp.

    Google Scholar 

  • Roberts, J., 1957. Thermal acclimation of metabolism in the crabPachygrapsus crassipes Randall. I. The influence of body size, starvation and moulting. Physiol. Zoöl.30, 232–242.

    Google Scholar 

  • Scheer, B. T. &Scheer, M. A. R., 1954: The hormonal control of metabolism in crustaceans. VIII. Oxygen consumption inLeander serratus. Pubbl. Staz. zool. Napoli25, 419–426.

    Google Scholar 

  • Schlieper, C., 1929. Über die Einwirkung niederer Salzkonzentrationen auf marine Organismen. Z. vergl. Physiol.9, 478–514.

    Google Scholar 

  • Scudamore, H. H., 1947. The influence of the sinus glands upon molting and associated changes in the crayfish. Physiol. Zoöl.20, 187–208.

    Google Scholar 

  • Segal, E. &Burbanck, W. D., 1963. Effects of salinity and temperature on osmoregulation in two latitudinally separated populations of an estuarine isopod,Cyathura polita (Stimpson). Physiol. Zoöl.36, 250–263.

    Google Scholar 

  • Segerstråle, S. G., 1944. Über die Verbreitung derIdotea-Arten im baltischen Meeresgebiet Finnlands. Commentat. biol.9 (6), 1–6.

    Google Scholar 

  • Sywula, T., 1964. A study on the taxonomy, ecology and geographical distribution of species of the genusIdotea Fabricius (Isopoda, Crustacea) in Polish Baltic. II. Ecological and zoogeographical part. Bull. Soc. Sci. Litt Poznan4 (D), 173–200.

    Google Scholar 

  • Shapunov, V. M., 1973. Calorie value of Black SeaIdotea baltica basteri (Aud.). (In Russian.) In: Energy metabolism of aquatic animals. The Academy of Science of the USSR, Publ. House “Nauka”, Moscow 62–73.

    Google Scholar 

  • Siebers, D., Lucu, Č., Sperling, K.-R. &Eberlein, K., 1972. Kinetics of osmoregulation in the crabCarcinus maenas. Mar. Biol.17, 291–303.

    Google Scholar 

  • Stevenson, J. R., 1961. Polyphenol oxydase in the integumental glands in relation to the moulting cycle of the isopod crustaceanArmadillidium vulgare. Biol. Bull. mar. biol. Lab., Woods Hole,121, 554–560.

    Google Scholar 

  • Stoicovici, F. &Rosca, D. I., 1958. Comportarea la variatii de salinitate. XLIV. Variatia consumului de oxigen la unii crustacei în cursul pricesului de echilibrare osmotică cu mediul exterior. Studii Cerc. Biol. Cluj9, 103–112.

    Google Scholar 

  • Strelnikova, V. M., 1971. Metabolism intensity in Isopoda crustaceans,Idotea ochotensis Brandt (Idoteidae) andCymodoce acuta Rich. (Sphaeromatidae). (In Russian.) Gidrobiol. Zh.7, 101–105.

    Google Scholar 

  • Tinturier-Hamelin, E., 1963. Polychromatisme et détermination génétique du sexe chez l'espèce polytypiqueIdotea balthica (Pallas) (Isopode valvifère). Cah. Biol. mar.4, 473–591.

    Google Scholar 

  • Todd, M. E., 1963. Osmoregulation inLigia oceanica andIdotea granulosa. J. exp. Biol.40, 381–392.

    Google Scholar 

  • Wieser, W., 1965. Über die Häutung vonPorcellio scaber Latr. Zool. Anz. (Suppl.)28, 178–195.

    Google Scholar 

  • Wolvekamp, H. P. &Waterman, T. H., 1960. Respiration. In: Physiology of Crustacea. Ed. byT. H. Waterman. Acad. Press. New York1, 35–100.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulnheim, H.P. Respiratory metabolism ofIdotea balthica (Crustacea, Isopoda) in relation to environmental variables, acclimation processes and moulting. Helgolander Wiss. Meeresunters 26, 464–480 (1974). https://doi.org/10.1007/BF01627627

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01627627

Keywords