Skip to main content
  • Published:

Growth rates of North Sea macroalgae in relation to temperature, irradiance and photoperiod

Abstract

Three eulittoral algae(Ulva lactuca, Porphyra umbilicalis, Chondrus crispus) and one sublittoral alga(Laminaria saccharina) from Helgoland (North Sea) were cultivated in a flow-through system at different temperatures, irradiances and daylengths. In regard to temperature there was a broad optimum at 10–15° C, except inP. umbilicalis, which grew fastest at 10 °C. A growth peak at this temperature was also found in four of 17 other North Sea macroalgae, for which the growth/temperature response was studied, whereas 13 of these species exhibited a growth optimum at 15 °C, or a broad optimum at 10–15 °C. Growth was light-saturated inU. lactuca, L. saccharina andC. crispus at photon flux densities above 70 µE m−2s−1, but inP. umbilicalis above 30 µE m−2s−1. Growth rate did not decrease notably in the eulittoral species after one week in relatively strong light (250 µE m−2s−1), but by about 50 % in the case of the sublittoralL. saccharina, as compared with growth under weak light conditions (30 µE m−2s−1). In contrast, chlorophyll content decreased in the sublittoral as well as in the eulittoral species, and the greatest change in pigment content occurred in the range 30–70 µE m−2s−1. Growth rate increased continuously up to photoperiods of 24 h light per day inL. saccharina andC. crispus, whereas daylength saturation occurred at photoperiods of more than 16 h light per day inU. lactuca andP. umbilicalis.

Literature cited

  • Arnon, D. I., 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase inBeta vulgaris. — Pl. Physiol., Lancaster24, 1–15.

    Google Scholar 

  • Bannister, P., 1976. Introduction to physiological plant ecology. Blackwell, Oxford, 273 pp.

    Google Scholar 

  • Biebl, R., 1956. Lichtresistenz von Meeresalgen. — Protoplasma46, 63–89.

    Article  Google Scholar 

  • Biebl, R., 1958. Temperatur- und osmotische Resistenz von Meeresalgen der bretonischen Küste. — Protoplasma50, 217–242.

    Article  Google Scholar 

  • Biebl, R., 1962. Temperaturresistenz tropischer Meeresalgen (verglichen mit jener von Algen in temperierten Meeresgebieten). — Botanica mar.4, 241–254.

    Google Scholar 

  • Björkman, O., 1973. Comparative studies on photosynthesis in higher plants. In: Photophysiology. Ed. by A. C. Giese. Acad. Press, New York,8, 1–63.

    Google Scholar 

  • Britz, S. J. & Briggs, W. R., 1976. Circadian rhythms of chloroplast orientation and photosynthetic capacity inUlva. — Pl. Physiol., Lancaster58, 22–27.

    Google Scholar 

  • Britz, S. J., Pfau, J., Nultsch, W. & Briggs, W. R., 1976. Automatic monitoring of a circadian rhythm of change in light transmittance inUlva. — Pl. Physiol., Lancaster58, 17–21.

    Google Scholar 

  • Burns, R. L. & Mathieson, A. C., 1972. Ecological studies of economic red algae. II. Culture studies ofChondrus crispus Stackhouse andGigartina stellata (Stackhouse) Batters. — J. exp. mar. Biol. Ecol.8, 1–6.

    Article  Google Scholar 

  • Drew, E. A., 1974. Light inhibition of photosynthesis in macro-algae. — Brit. phycol. J.9, 217–218.

    Google Scholar 

  • Egle, K., 1960. Menge und Verhältnis der Pigmente. In: Encyclopedia of plant physiology. Vol V: The assimilation of carbon dioxide. P. 1. Ed. by W. Ruhland. Springer, Berlin, 444–496.

    Google Scholar 

  • Enright, C. T., 1979. Competitive interaction betweenChondrus crispus (Florideophyceae) andUlva lactuca (Chlorophyceae) inChondrus aquaculture. — Int. Seaweed Symp.9, 209–218.

    Google Scholar 

  • Evans, G. C., 1972. The quantitative analysis of plant growth. Studies in ecology. Blackwell, Oxford,1, 1–734.

    Google Scholar 

  • Gessner, F., 1970. Temperature: Plants. In: Marine ecology. Ed. by O. Kinne. Wiley-Interscience, London,1 (1), 363–406.

    Google Scholar 

  • Hanisak, M. D., 1979. Growth patterns ofCodium fragile spp.tomentoides in response to temperature, irradiance, salinity, and nitrogen source. — Mar. Biol.50, 319–332.

    Article  Google Scholar 

  • Harris, G. P., 1978. Photosynthesis, productivity and growth: the physiological ecology of phytoplankton. — Arch. Hydrobiol. (Beih.: Ergebn. Limnol.)10, 1–171.

    Google Scholar 

  • Hoek, C. van den, 1975. Phytogenographical provinces along the coasts of the northern Atlantic Ocean. — Phycologia14, 317–330.

    Google Scholar 

  • Hoek, C. van den, 1979. The phytogeography ofCladophora (Chlorophyceae) in the northern Atlantic Ocean, in comparison to that of other benthic algal species. — Helgoländer wiss. Meeresunters.32, 374–393.

    Google Scholar 

  • Hoek, C. van den & Donze, M., 1967. Algal phytogeography of the European Atlantic coasts. — Blumea15, 63–89.

    Google Scholar 

  • King, R. J. & Schramm, W., 1976. Photosynthetic rates of benthic marine algae in relation to light intensity and seasonal variation. — Mar. Biol.37, 215–222.

    Article  Google Scholar 

  • Kornmann, P., 1962. Eine Revision der GattungAcrosiphonia. — Helgoländer wiss. Meeresunters.8, 219–292.

    Article  Google Scholar 

  • Larcher, W., 1975. Physiological plant ecology. Springer, New York, 252 pp.

    Google Scholar 

  • Lüning, K., 1975. Kreuzungsexperimente anLaminaria saccharina von Helgoland und von der Isle of Man. — Helgoländer wiss. Meeresunters.27, 108–114.

    Article  Google Scholar 

  • Lüning, K., 1979. Growth strategies of threeLaminaria species (Phaeophyceae) inhabiting different depth zones in the sublittoral region of Helgoland (North Sea). — Mar. Ecol. Prog. Ser.1, 195–207.

    Google Scholar 

  • Lüning, K., 1980. Light. In: The biology of seaweeds. Ed. by C. S. Lobban & M. J. Wynne. Blackwell, Oxford (in press).

    Google Scholar 

  • Lüning, K., Chapman, A. R. O. & Mann, K. H., 1978. Crossing experiments in the non-digitate complex ofLaminaria from both sides of the Atlantic. — Phycologia17, 293–298.

    Google Scholar 

  • Mathieson, A. C. & Norall, T. L., 1975. Photosynthetic studies ofChondrus crispus. — Mar. Biol.33, 207–213.

    Article  Google Scholar 

  • McLachlan, J., 1974. Effects of temperature and light on growth and development of embryos ofFucus edentatus andF. distichus ssp.distichus. — Can. J. Bot.52, 943–951.

    Google Scholar 

  • Neish, A. C. & Fox, C. H., 1971. Greenhouse experiments on the vegetative propagation ofChondrus crispus. — Tech. Rep. Atl. reg. Lab. natn Res. Counc. Can., Halifax, N. S.12.

  • Nelson, D. M. & Brand, L. E., 1979. Cell division periodicity in 13 species of marine phytoplankton on a light: dark cycle. — J. Phycol.15, 67–75.

    Article  Google Scholar 

  • Neuscheler-Wirth, H., 1970. Wachstumsgeschwindigkeit und Wachstumsrhythmik beiMougeotia. — Z. Pflanzenphysiol.63, 352–396.

    Google Scholar 

  • Newroth, P. R., 1971. The distribution ofPhyllophora in the North Atlantic and Arctic regions. — Can. J. Bot.49, 1017–1024.

    Google Scholar 

  • Ohno, M., 1977. Effect of temperature on the growth rate of seaweeds in an aquatron culture system. — Bull. Jap. Soc. Phycol.25, 257–263.

    Google Scholar 

  • Ramus, J., 1978. Seaweed anatomy and photosynthetic performance: the ecological significance of light guides, heterogenous absorption and multiple scatter. — J. Phycol.14, 352–362.

    Google Scholar 

  • Ramus, J., Beale, S. I. & Mauzerall, D., 1976a. Correlation of changes in pigment content with photosynthetic capacity of seaweeds as a function of water depth. — Mar. Biol.37, 231–238.

    Article  Google Scholar 

  • Ramus, J., Beale, S. I., Mauzerall, D. & Howard, K. L., 1976b. Changes in photosynthetic pigment concentration in seaweeds as a function of water depth. — Mar. Biol.37, 223–229.

    Article  Google Scholar 

  • Setchell, W. A., 1915. The law of temperature connected with distribution of marine algae. — Ann. Mo. bot. Gdn2, 287–305.

    Google Scholar 

  • Setchell, W. A., 1920. The temperature interval in the geographical distribution of marine algae. — Science, N. Y.53, 187–190.

    Google Scholar 

  • Sournia, A., 1974. Circadian periodicities in natural populations of marine phytoplankton. — Adv. mar. Biol.12, 325–389.

    Google Scholar 

  • Strömgren, T., 1978. The effect of photoperiod on the length growth of five species of intertidal Fucales. — Sarsia63, 155–158.

    Google Scholar 

  • Terborgh, J. & Thimann, K., 1964. Interaction between daylength and light intensity in the growth and chlorophyll content ofAcetabularia crenulata. — Planta63, 83–98.

    Article  Google Scholar 

  • Wasley, J. W. F., Scott, W. T. & Holt, A. S., 1970. Chlorophyllides c. — Can. J. Biochem.48, 376–383.

    PubMed  Google Scholar 

  • Yokohama, Y., 1973. Photosynthetic properties of marine benthic green algae from different depths in the coastal area. — Bull. Jap. Soc. Phycol.21, 70–75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fortes, M.D., Lüning, K. Growth rates of North Sea macroalgae in relation to temperature, irradiance and photoperiod. Helgolander Meeresunters 34, 15–29 (1980). https://doi.org/10.1007/BF01983538

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01983538

Keywords