Skip to main content
  • Published:

Ultrastructural observations on the marine fouling diatomAmphora

Abstract

Ecological and Scanning electron microscope (S. E. M.) studies indicated that the diatomAmphora was an important constituent in the initial colonization of test panels coated with a copper antifouling composition.Amphora was also found as the dominant fouling diatom species on paint samples from “in-service” supertankers and yachts. Associated with the diatom was copious amounts of mucilaginous material, which often encapsulated the cells. Histochemical analysis of the mucilage indicates that it is predominantly polysaccharide in nature. Using the Transmission electron microscope (T. E. M.) and electron microscope cytochemistry the intracellular origin of the adhesive was investigated. T. E. M. and S. E. M. observations of acid-cleaned-cells indicate that the mucilage may be secreted through specialized regions of the frustule. Material isolated from antifouling panels was compared with laboratory culturedAmphora spp. for copper resistance and internal accumulation using TEMSCAN — X ray analytical equipment.

Literature cited

  • Allan, G. G., Medcalf, D. G., Lewin, J., Brannon, J. H. & Scott, J. R., 1974. Polysaccharides from unicellular algae and diatoms. — Int. Seaweed Symp.8, abstr. B 8.

  • Anderson, R. O., 1975. The ultrastructure and cytochemistry of resting cell formation inAmphora coffeaeformis. — J. Phycol.9, 50–61.

    Google Scholar 

  • Anon, 1952. Species recorded from fouling. In: Marine fouling and its prevention. United States Naval Institute, Annapolis, 165–207.

  • Ashida, J., 1965. Adaptation of fungi to metal toxicants. — A. Rev. Phytopath.3, 153–174.

    Article  Google Scholar 

  • Baker, J. R. J. & Evans, L. V., 1973a. The ship-fouling algaEctocarpus. I. The ultrastructure and cytochemistry of plurilocular reproductive stages. — Protoplasma77, 1–13.

    Article  Google Scholar 

  • Baker, J. R. J. & Evans, L. V., 1973b. The ship-fouling algaEctocarpus. II. Ultrastructure of the unilocular reproductive stages. — Protoplasma77, 181–189.

    Article  Google Scholar 

  • Bishop, J. H., Marson, F. & Silva, S. R., 1972. Microfouling on antifouling coatings. —Aust. OCCA Proc. News 9, 4–6.

    Google Scholar 

  • Bishop, J. H., Silva, S. R. & Silva, V. M., 1974. A study of micro-fouling on antifouling coatings using electron microscopy. — J. Oil Colour Chem. Ass.57, 30–35.

    Google Scholar 

  • Blanquet, P. R., 1976. Ultrahistochemical study on the ruthenium red surface staining. Part 1. Processes which give rise to an electron dense marker. — Histochemistry47, 63–78.

    Article  PubMed  Google Scholar 

  • Button, D. K., 1968. Some factors influencing kinetic constants for microbial growth in dilute solutions. In: Symposium on organic matter in natural waters. Ed. by D. W. Hood. Univ. of Alaska, College, Alaska. 537–547

    Google Scholar 

  • Callow, M. E., Wood, K. R. & Evans, L. V., 1978. The biology of slime films. Part 3. — Shipp. Wld171, 133, 5, 9.

    Google Scholar 

  • Chamberlain, A. H. L., 1976. Algal settlement and secretion of adhesive materials. In: Proceedings of the 3rd international biodegradation symposium. Ed. by J. M. Sharpley & A. M. Kaplan. Applied Science Publ., London, 417–432.

    Google Scholar 

  • Chamberlain, A. H. L. & Evans, L. V., 1973. Aspects of spore production in the red algaCeramium. — Protoplasma76, 139–159.

    Article  Google Scholar 

  • Chayen, J., Bitensky, L., Butcher, R. G. & Poulter, L. W., 1973. A guide to practical histochemistry. Lippincott, Philadelphia, 271 pp.

    Google Scholar 

  • Christie, A. O., Evans, L. V. & Shaw, M., 1970. Studies on the ship-fouling algaEnteromorpha II. The effect of certain enzymes on the adhesion of zoospores. — Ann. Bot.34, 467–482.

    Google Scholar 

  • Cloutier-Mantha, L. & Brown, D. A., 1980. The effects of mercury exposure on intracellular distribution of mercury, copper and zinc-inSkeletonema costatum (Grev.) Cleve. — Botanica. mar.23, 53–58.

    Google Scholar 

  • Coe, W. R. & Allen, W. E., 1937. Growth of sedentary marine organisms on experimental blocks and plates for nine successive years. — Bull. Scripps Instn. Oceanogr. tech. Ser.4, 101–136.

    Google Scholar 

  • Corpe, W. A., 1972. Periphytic marine bacteria and the formation of microbial films on solid surfaces. In: Effect of the ocean environment on microbial activities. Ed. by R. R. Colwell & R. Y. Morita. Univ. Park Press, Baltimore, 397–417.

    Google Scholar 

  • Corpe, W. A., 1973. The role of primary film forming marine bacteria. In: Proceedings of the 3rd international congress on marine corrosion and fouling. Ed. by R. F. Acker, B. F. Brown, J. R. Depalma & W. P. Iverson. Northwestern Univ. Press, Evanston, Ill., 598–609.

    Google Scholar 

  • Corpe, W. A., 1974. Detachment of marine periphytic bacteria from surfaces of glass slides. — Devs. ind. Microbiol.15, 281–287.

    Google Scholar 

  • Corpe, W. A., 1977. Primary bacterial films and marine microfouling. In: Proceedings of the 4th international congress on marine corrosion and fouling. Ed. by V. Romanovsky. Centre de Recherches et d'Etudes Océanographiques, Boulogne, 97–100.

    Google Scholar 

  • Crawford, R. M., 1973. The protoplasmic ultrastructure of the vegetative cell ofMelosira varians C. Agardh. — J. Phycol.9, 50–61.

    Google Scholar 

  • Crisp, D. J. & Ryland, J. S., 1960. Influence of filming and of surface texture on the settlement of marine organisms. — Nature, Lond.185, 119.

    Google Scholar 

  • Crosby, L. H. & Wood, E. J. F., 1959. Studies on Australian and New Zealand diatoms. II. Normally epontic and benthic genera. — Trans. R. Soc. N. Z.,86, 1–58.

    Google Scholar 

  • Danielli, R., 1953. Cytochemistry: A critical approach. Wiley, New York, 139 pp.

    Google Scholar 

  • Dawson, P. A., 1973. Observations on the structure of some forms ofGomphonema parvulum Kutz. II. The internal organization. — J. Phycol.9, 165–175.

    Google Scholar 

  • Evans, L. V. & Christie, A. O., 1970. Studies on the ship-fouling algaEnteromorpha. I. Aspects of the fine structure and biochemistry of swimming and newly settled zoospores. — Ann. Bot.34, 451–466.

    Google Scholar 

  • Evans, L. V. & Holligan, S. M., 1972. Correlated light and electron microscope studies on brown algae. I. Localization of alginic and sulphated polysaccharides inDictyota. — New Phytol.71, 1161–1172.

    Google Scholar 

  • Feder, N. & O'Brien, T. P., 1968. Plant microtechnique: Some principles and new methods. — Am. J. Bot.55, 123–142.

    Google Scholar 

  • Fitzgerald, G. P., 1967. The algistatic properties of silver. — Wat. Sewage Wks114, 185–189.

    Google Scholar 

  • Fogg, G. E. & Westlake, D. F., 1955. The importance of extracellular products of algae in fresh water. — Verh. int. Verein. theor. angew. Limnol.12, 219–232.

    Google Scholar 

  • Foster, P. L., 1977. Copper exclusion as a mechanism of heavy metal tolerance in a green alga. — Nature, Lond.269, 322–323.

    Google Scholar 

  • Gerchakov, M. S., Marszalek, D. S., Roth, F. J. & Udey, L. R., 1977. Succession of periphytic microorganism on metal and glass surfaces in natural seawater. In: Proceedings of the 4th international congress on marine corrosion and fouling. Ed. by V. Romanovsky, Centre de Recherches et d'Etudes Océanographiques, Boulogne, 203–211.

    Google Scholar 

  • Gerchakov, M. S., Marszalek, D. S., Roth, F. J., Sallmann, B. & Udey, L. R., 1978. Observation on microfouling applicable to OTEC systems, In: Proceedings of the OTEC biofouling and corrosion symposium. Ed. by R. H. Gray. Seattle, Washington Pacific Northwest Laboratory, Richland, Washington, 63–75.

    Google Scholar 

  • Guillard, R. R. L. & Ryther, J. H., 1962. Studies on marine planktonic diatoms. I.Cyclotella nana Hustedt andDetonula confervaceae (Cleve.) Gran. — Can. J. Microbiol.8, 229–239.

    PubMed  Google Scholar 

  • Harper, M. A. & Harper, J. F., 1967. Measurements of diatom adhesion and their relationship with movement. — Br. phycol. Bull.3, 195–207.

    Google Scholar 

  • Harris, J. E., 1946. Report on anti-fouling research, 1942–44. — J. Iron Steel Inst.154, 296–333.

    Google Scholar 

  • Hasle, G. R. & Fryxell, G. A., 1970. Diatoms: Cleaning and mounting for light and electron microscopy. — Trans. Am. microsc. Soc.89, 469–474.

    Google Scholar 

  • Heath, I. D., 1961. Staining of sulphated mucopolysaccharides. — Nature, Lond.191, 1370–1371.

    Google Scholar 

  • Hendey, N. I., 1951. Littoral diatoms of Chichester Harbour with special reference to fouling. — Jl. R. microsc. Soc.71, 1–86.

    Google Scholar 

  • Hendey, N. I., 1964. An introductory account of the smaller algae of British coastal waters. — Fishery Invest., Lond. (Ser. 4)5, 1–317.

    Google Scholar 

  • Hollander, H., 1964. The histochemistry of sulphated esters with Trypaflavin. — Histochemie3, 387–395.

    Article  Google Scholar 

  • Hotchkiss, R. D., 1948. A microchemical reaction resulting in the staining of polysaccharide structures in fixed tissue preparations. — Arch. Biochem.16, 131–141.

    Google Scholar 

  • Jones, G. E., 1967. Growth ofEscherichia coli in heat and copper-treated synthetic sea water. — Limnol. Oceanogr.12, 167–172.

    Google Scholar 

  • Karajeva, N. I., 1964–1965. Data on the flora of diatom algae in marine fouling along the east coast of the Caspian sea. In: Marine fouling and borers. Ed. by I. V. Stavostin, U. S. Naval Oceanographic Office, Washington, D. C., 41–53. (Translation. 221.)

    Google Scholar 

  • Lackenby, H., 1962. Resistance of ships, with special reference to skin friction and hull condition. — Proc. Instn mech. Engrs176, 981–1014.

    Google Scholar 

  • Lebedev, Y. M., Permitin, Y. Y. & Karajeva, N. I., 1964–1965. The problem of fouling on panels in the Black Sea. In: Marine fouling and borers. Ed. by I. V. Stavostin, U. S. Naval Oceanographic Office, Washington, D. C., 390–398. (Translation. 221.)

    Google Scholar 

  • Lewin, J. C., 1963. Heterotrophy in marine diatoms. In: Marine micro-biology, Ed. by C. H. Oppenheimer. Thomas, Springfield Ill., 229–235.

    Google Scholar 

  • Lewin, R. A., 1958, The mucilage tubes ofAmphipleura rutilans. — Limnol. Oceanogr.3, 111–113.

    Google Scholar 

  • Marson, F., 1969. Antifouling paints. I. Theoretical approach to leaching of soluble pigments from insoluble paint vehicles. — J. appl. Chem.19, 93–99.

    Google Scholar 

  • Marszalek, D. S., Gerchakov, S. M. & Udey, L. R., 1979. Influence of substrate composition on Marine microfouling. — Appl. environ. Microbiol.38, 987–995.

    Google Scholar 

  • McCully, M. E., 1966. Histological studies on the genusFucus. I. Light microscopy of the mature vegetative plant. — Protoplasma62, 287–305.

    Article  Google Scholar 

  • Milanovich, F. P., Wilson, D. W. & Yeh, Y., 1975. Detoxifying effect of yellow substance onE. coli in media containing copper. — Nature, Lond.253, 460–461.

    Google Scholar 

  • Neilsen, E. S. & Kamp-Nielsen, L. K., 1970. Influence of deleterious concentrations of copper on the growth ofChlorella pyrenoidosa. — Physiol. Pl.23, 828–840.

    Google Scholar 

  • O'Neill, T. B. & Wilcox, G. I., 1971. The formation of a “primary film” on materials submerged in the sea of Port Hueneme, California. — Pacif. Sci.25, 1–12.

    Google Scholar 

  • Parker, B. C. & Diboll, A. G., 1966. Alcian stains for histochemical localization of acid and sulphated polysaccharides in algae. — Phycologia6, 37–46.

    Google Scholar 

  • Paskins-Hurburt, A. J., Skoryna, S. C., Tanaka, Y., Moore, W. & Stara, J. F., 1978. Fucoidan: its binding of lead and other metals. — Botanica mar.21, 13–22.

    Google Scholar 

  • Paulsen, B. S., Haug, A. & Larsen, B., 1978. Structural studies of a carbohydrate containing polymer present in the mucilage tubes of the diatomBerkeleya rutilans (Trent). Grün. — Carbohydrate Res.66, 103–111.

    Article  Google Scholar 

  • Pearse, A. G. E., 1968. Histochemistry: theoretical and applied I. Churchill, London, 759 pp.

    Google Scholar 

  • Phillip, A. T., 1973. Marine science aids the development of antifouling coatings. — Aust. OCCA Proc. News 17–22.

  • Pyefinch, K. A., 1951. Seaweeds as fouling organisms. In: Seaweed utilization. Ed. by L. Newton. Sampson-Low, London, 146–156.

    Google Scholar 

  • Reynolds, E. S., 1963. The use of lead citrate at high pH as an electron opaque stain in electron microscopy. — J. Cell Biol.17, 208–213.

    PubMed  Google Scholar 

  • Ruthmann, A., 1970. Methods in cell research. Bell, London, 368 pp.

  • Scott, J. E., Dorling, J., 1965. Differential staining of acid glycosaminoglycans (Mucopolysaccharides) by alcian blue in salt solutions. — Histochemie5, 221–233.

    PubMed  Google Scholar 

  • Sechler, G. E. & Gundersen, K., 1973. Role of surface chemical composition on the microbial contribution to primary films. In: Proceedings of the 3rd international congress on marine corrosion and fouling. Ed. by R. F. Acker, B. F. Brown, J. R. De Palma & W. P. Inverson. Northwestern Univ. Press, Evanston, Ill., 610–616.

    Google Scholar 

  • Silverberg, B. A., 1975. Ultrastructural localization of lead inStigeoclonium tenue (Chlorophyceae, Ulotrichales) as demonstrated by cytochemical and x-ray microanalysis. — Phycoloqia14, 265–274.

    Google Scholar 

  • Silverberg, B. A., Stokes, P. M. & Ferstenberg, L. B., 1976. Intranuclear complexes in a copper-tolerant green alga. — J. Cell Biol.69, 210–214.

    Article  PubMed  Google Scholar 

  • Skerman, T. M., 1956. The nature and development of primary films on surfaces submerged in the sea. — N. Z. Jl. Sci. Technol.38, 44–57.

    Google Scholar 

  • Skerman, T. M., 1958. Marine fouling at the port of Lyttelton. — N. Z. Jl. Sci.1, 224–257.

    Google Scholar 

  • Skerman, T. M., 1959. Marine fouling at the port of Auckland. — N. Z. Jl. Sci.2, 57–95.

    Google Scholar 

  • Spicer, S. S., 1960. A correlative study of the histochemical properties of rodent acid mucopolysaccharides. — J. Histochem. Cytochem.8, 18–35.

    PubMed  Google Scholar 

  • Spicer, S. S., 1965. Diamine methods for differentiating mucosubstances histochemically. — J. Histochem. Cytochem.13, 211–235.

    PubMed  Google Scholar 

  • Spurr, A. R., 1969. A low-viscosity epoxy resin embedding medium for electron microscopy. — J. Ultrastruct. Res.26, 31–43.

    PubMed  Google Scholar 

  • Stanbury, F. H., 1944. Experiments on the growth of marine plants with special reference to the effects of copper and mercury salts. — Marine corrosion Sub. Com. Rept. Iron and Steel Corr. Comm. (M. S.) 10 pp.

  • Thièry, J. P., 1967. Mise en evidence des polysaccharides sur coupes fines en microscopie electronique. — J. Microsc.6, 987–1018.

    Google Scholar 

  • Veroy, R. L., Mantano, N., Cuzman, M. L. B., Laserna, E. C. & Cajipe, J. B. G., 1980. Studies on the binding of heavy metal to algal polysaccharides from Philippine seaweeds. I. Carrageenan and the binding of lead an cadmium. — Botanica mar.23, 59–62.

    Google Scholar 

  • Waksman, S. A., Johnstone, D. D., Carey, C. L., 1943. The effect of copper upon the development of bacteria in seawater and the isolation of specific bacteria. — J. mar. Res.5, 136–152.

    Google Scholar 

  • Walker, G., 1977. “Copper” granules in the barnacleBalanus balanoides. — Mar. Biol.39, 343–349.

    Article  Google Scholar 

  • Wood, E. J. F., 1950. Investigations in under water fouling. I. The role of bacteria in the early stages of fouling. — Aust. J. mar. Freshwat. Res.1, 85–91.

    Google Scholar 

  • Wood, E. J. F., 1953. Heterotrophic bacteria in marine environments of eastern Australia. — Aust. J. mar. Freshwat. Res.4, 160–200.

    Google Scholar 

  • Wood, E. J. F., 1967. Some economic aspects of water microbiology. In: Microbiology of oceans and estuaries. Ed. by E. J. F. Wood, Elsevier, Amsterdam, 206–225.

    Google Scholar 

  • Yasuma, A. & Ichikawa, T., 1953. Ninhydrin-Schiff and alloxan-Schiff staining. A new histochemical staining method for proteins. — J. Lab. clin. Med.41, 296–299.

    PubMed  Google Scholar 

  • Zobell, C. E., 1946. Marine microbiology. Chronica Botanica Co., Waltham, Mass., 230 pp.

    Google Scholar 

  • Zobell, C. E. & Allen, E. C., 1935. The significance of marine bacteria in the fouling of submerged surfaces. — J. Bacteriol.29, 239–251.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daniel, G.F., Chamberlain, A.H.L. & Jones, E.B.G. Ultrastructural observations on the marine fouling diatomAmphora . Helgolander Meeresunters 34, 123–149 (1980). https://doi.org/10.1007/BF01984035

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01984035

Keywords