Skip to main content
  • Published:

The role of the transbranchial potential difference in hyperosmotic regulation of the shore crabCarcinus maenas

Abstract

When isolated gills of the shore crabCarcinus maenas were bathed and perfused with identical solutions on both sides (50 % sea water), a spontaneous transepithelial potential difference (PD) of some millivolts (hemolymph side negative) was established. This PD is of active nature and requires the metabolism of the living cell, since it uses its own sources of energy in addition to organic nutrients offered in the flow of artificial hemolymph. Addition of sodium cyanide and dinitrophenole to bathing and perfusion medium resulted in reversible breakdown of PDs in a concentration-dependent mode. In posterior gills ofC. maenas, the potential differences were more negative compared to data measured in anterior gills of the same individuals. These results are correlated with higher specific activities of Na-K-ATPase in posterior gills. Experiments with triamterene indicate that sodium uptake inC. maenas is sensitive to this diuretic drug, when applied on the apical side of the epithelial cell. The results obtained show that active uptake of sodium from medium to blood across the gills is performed by a complex mechanism including participation of several basal and apical transport steps.

Literature cited

  • Benos, D. J., Mandel, L. J. & Balaban, R. S., 1979. On the mechanism of the amiloride-sodium entry site interaction in anuran skin epithelia. — J. gen. Physiol.73, 307–326.

    PubMed  Google Scholar 

  • Berlind, A. & Kamemoto, F. I., 1977. Rapid water permeability changes in eyestalkless euryhaline crabs and in isolated, perfused gills. — Comp. Biochem. Physiol.58A, 383–385.

    Article  Google Scholar 

  • Burnett, L. E., 1984. CO2-excretion across isolated perfused crab gills: Facilitation by carbonic anhydrase. — Am. Zool.24, 253–264.

    Google Scholar 

  • Drews, G., 1985. Elektrophysiologische und biochemische Untersuchungen zur osmoregulatorischen Fähigkeit und zur Salzaufnahme über das Kiemenepithel vonUca tangeri. Diss., Freie Univ. Berlin, 139 pp.

    Google Scholar 

  • Greenaway, P., 1976. The regulation of haemolymph calcium concentration of the crabCarcinus maenas (L.). — J. exp. Biol.64, 149–157.

    PubMed  Google Scholar 

  • Habas Mantel, L., 1967. Asymmetry potentials, metabolism and sodium fluxes in gills of the blue crabCallinectes sapidus. — Comp. Biochem. Physiol.20, 743–753.

    Article  Google Scholar 

  • King, E. N. & Schoffeniels, E., 1969. In vitro preparation of crab gill for use in ion transport studies. — Archs int. Physiol. Biochim.77, 105–111.

    Google Scholar 

  • Kinsella, J. L. & Aronson, P. S., 1981. Amiloride inhibition of the Na+ — H+ exchanger in renal microvillus membrane vesicles. — Am. J. Physiol.241, F374-F379.

    PubMed  Google Scholar 

  • Koch, H. J., Evans, J. & Schicks, E., 1954. The active absorption of ions by the isolated gills of the crabEriocheir sinensis (M. Edw.). — Meded. vlaam. Acad. Kl. Wet.16, 1–16.

    Google Scholar 

  • Lucu, C. & Siebers, D., 1986. Amiloride sensitive Na-flux and potentials in perfusedCarcinus gill preparations. — J. exp. Biol.122, 25–35.

    Google Scholar 

  • Péqueux, A. & Gilles, R., 1978. Osmoregulation of the euryhaline chinese crabEriocheir sinensis. Ionic transports across isolated perfused gills as related to the salinity of the environment. In: Physiology and behaviour of marine organisms. Ed. by D. S. McLusky & A. J. Berry. Pergamon Press, Oxford, 105–111.

    Google Scholar 

  • Péqueux, A. & Gilles, R., 1981. Na+ fluxes across isolated perfused gills of the chinese crabEriocheir sinensis. — J. exp. Biol.92, 173–186.

    Google Scholar 

  • Siebers, D., Lucu, C., Sperling, K. R. & Eberlein, K., 1972. Kinetics of osmoregulation in the crabCarcinus maenas. — Mar. Biol.17, 291–303.

    Article  Google Scholar 

  • Siebers, D., Leweck, K., Markus, H. & Winkler, A., 1982. Sodium regulation in the shore crabCarcinus maenas as related to ambient salinity. — Mar. Biol.69, 37–43.

    Article  Google Scholar 

  • Siebers, D., Winkler, A., Lucu, C., Thedens, G. & Weichart, D., 1985. Na-K-ATPase generates an active transport potential in the gills of the hyperregulating shore crabCarcinus maenas. — Mar. Biol.87, 185–192.

    Article  Google Scholar 

  • Siebers, D., Lucu, C., Winkler, A., Dalla Venezia, L. & Wille, H., 1986. Active uptake of sodium on the gills of the hyperregulating shore crabCarcinus maenas. — Helgoländer Meeresunters.40, 151–160.

    Google Scholar 

  • Towle, D. W., 1981. Role of the Na+ + K+-ATPase in ionic regulation by marine and estuarine animals. — Mar. Biol. Lett.2, 107–121.

    Google Scholar 

  • Towle, D. W., 1984a. Regulatory functions of Na+ + K+-ATPase in marine and estuarine animals. In: Osmoregulation in estuarine and marine animals. Ed. by A. Péqueux & L. Bolis. Springer, Berlin, 157–170.

    Google Scholar 

  • Towle, D. W., 1984b. Membrane-bound ATPases in arthropod ion-transporting tissues. — Am. Zool.24, 177–185.

    Google Scholar 

  • Winkler, A., Siebers, D. & Leweck, K., 1982. Zur Bestimmung von Natrium im Meerwasser mit ionensensitiven Elektroden. — GIT Fachz. Lab.26, 228–229.

    Google Scholar 

  • Zanders, I. P., 1980. Regulation of blood ions inCarcinus maenas (L.). — Comp. Biochem. Physiol.65A, 97–108.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winkler, A. The role of the transbranchial potential difference in hyperosmotic regulation of the shore crabCarcinus maenas . Helgolander Meeresunters 40, 161–175 (1986). https://doi.org/10.1007/BF01987293

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01987293

Keywords