Skip to main content
  • Invertebrates
  • Published:

Microscopical studies on the hemocytes of bivalves and their phagocytic interaction with selected bacteria

Abstract

Hemocytes represent one of the most important defense mechanisms against foreign material in Mollusca. The morphology, hematological parameters and behaviour of hemolymph cells were studied in the southern quahogMercenaria campechiensis, the eastern oysterCrassostrea virginica, and the blood arkAnadara ovalis challenged with the bacteriaVibrio vulnificus andV. anguillarum. Two general classes of hemocytes (granular and agranular) exist inC. virginica andM. campechiensis. In contrast,A. ovalis possesses 3 general classes (granular, agranular and erythrocytes). Three types of granules were identified by light microscopy. When hemolymph cells were studied by transmission electron microscopy, the cytoplasm of hemolymph cells was noted to contain many organelles, including electron dense granules. Both agranular and granular hemolymph cells were capable of colchicine-sensitive pseudopodial movement and spreading. The results indicate that marine bivalves possess hemolymph blood cells which may play a role in the internal defense paralleling mammalian phagocytes. The morphology of these cells, as determined by light, scanning and transmission electron microscopy, showed some similarity to mammalian-mononuclear phagocytes. The sub-cellular events of molluscan hemocyte phagocytosis ofV. vulnificus andV. anguillarum were studied by both scanning and transmission electron microscopy. The role of these cells and the factors which govern their behavior are of economic and public health importance.

Literature cited

  • Awapara, J. & Campbell, J. S., 1964. Utilization of C14O2 for the formation of some amino acids in three invertebrates. — Comp. Biochem. Physiol.11, 231–235.

    Article  PubMed  Google Scholar 

  • Cheng, T. C., 1963. Biochemical requirements of larval trematodes. — Ann. N. Y. Acad. Sci.113, 289–320.

    PubMed  Google Scholar 

  • Cheng, T. C., 1967. Marine molluscs as hosts for symbiosis: with review of known parasites of commercially important species. — Adv. mar. Biol.5, 1–424.

    Google Scholar 

  • Cheng, T. C., 1975. Functional morphology and biochemistry of molluscan phagocytes. — Ann. N. Y. Acad. Sci.266, 343–379.

    PubMed  Google Scholar 

  • Cheng, T. C. & Cali, A., 1974. An electron microscope study of the fate of bacteria phagocytized by granulocytes ofCrassostrea virginica. — Contemp. Top. Immunobiol.4, 25–35.

    Google Scholar 

  • Cheng, T. C.. & Foley, D. A., 1972. A scanning electron microscope study of the cytoplasmic granules ofCrassostrea virginica granulocytes. — J. Invertebr. Pathol.20, 372–374.

    Article  Google Scholar 

  • Cheng, T. C. & Galloway, P. C., 1970. Transplantation immunity in mollusks: the histoincompatibility ofHelisoma duryi normale with allografts and xenografts. — J. Invertebr. Pathol.15, 177–192.

    Article  PubMed  Google Scholar 

  • Cheng, T. C. & Rifkin, E., 1970. Cellular reactions in marine molluscs in response to helminth parasitism. In: A symposium on diseases of fishes and shellfishes. Ed. by S. F. Snieszko. Washington, 443–496. (Spec. Publ. Am. Fish. Soc. 5.)

  • Cheng, T. C. & Rudo, B. M., 1976. Distribution of glycogen resulting from degradation of14C-labelled bacteria in the American oyster,Crassostrea virginica. — J. Invertebr. Pathol.27, 259–262.

    Article  PubMed  Google Scholar 

  • Feng, S. Y., Feng, J. S., Burke C. N. & Khairallah, L. H., 1971. Light and electron microscopy of the leucocytes ofCrassostrea virginica (Mollusca: Pelecypoda). — Z. Zellforsch. mikrosk. Anat.120, 222–245.

    Article  PubMed  Google Scholar 

  • Fishman, W. H. & Lerner, F., 1953. A method of estimating serum acid phosphatase of prostatic origin. — J. biol. Chem.200, 89–97.

    PubMed  Google Scholar 

  • Fishman, W. H., Springer, B. & Brunetti, R., 1948. Application of an improved glucuronidase assay method to the study of human blood β-glucuronidase. — J. biol. Chem.173, 449–456.

    Google Scholar 

  • Foley, D. A. & Cheng, T. C., 1972. Interaction of molluscs and foreign substances: The morphology and behavior of hemolymph cells of the American oyster,Crassostrea virginica, in vitro. — J. Invertebr. Pathol.19, 383–394.

    Article  Google Scholar 

  • Galtsoff, P. S., 1964. The American oyster,Crassostrea virginica. Gmelin. — Fish. Bull. U.S.64, 1–480.

    Google Scholar 

  • Goddard, C. K. & Martin, A. W., 1966. Carbohydrate metabolism. In: Physiology of mollusca. Ed. by K. M. Wilbur & C. M. Yonge. Acad. Press, New York,1, 275–308.

    Google Scholar 

  • Guida, V. G. & Cheng, T. C., 1980. Lead hematoxylin-basic fuchsin: a new stain for molluscan hemocytes. — Trans. Am. microsc. Soc.99, 135–140.

    Google Scholar 

  • Hardy, S. W., Fletcher, T. C. & Olafsen, J. A., 1977. Aspects of cellular and humoral defence mechanisms in the Pacific oyster,Crassostrea gigas. In: Developmental immunbiology. Ed. by J. B. Solomon & J. D. Horton. Elsevier/North-Holland Biomedical Press, Amsterdam, 59–66.

    Google Scholar 

  • Lowry, O. H., Rosebrough, H. J., Farr, A. L. & Randall, R. I., 1951. Protein measurement with folin phenol reagent. — J. biol. Chem.193, 265–275.

    PubMed  Google Scholar 

  • Montgomery, R., 1957. Determination of glycogen. — Archs Biochem. Biophys.67, 378–386.

    Article  Google Scholar 

  • Read, K. R. H., 1962. Transamination in certain tissue homogenates of the bivalved molluscs (Mytilus edulis L. andModiolus modiolus L.). — Comp. Biochem. Physiol.7, 15–22.

    Article  PubMed  Google Scholar 

  • Reitman, S. & Frankel, S., 1957. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminase. — Am. J. clin. Path.28, 56–63.

    Google Scholar 

  • Rodrick, G. E., 1979. Selected enzyme activities inMya arenaria hemolymph. — Comp. Biochem. Physiol.62B, 313–316.

    Google Scholar 

  • Rodrick, G. E. & Cheng, T. C., 1974. Kinetic properties of lysozyme from the hemolymph ofCrassostrea virginica. — J. Invertebr. Pathol.24, 41–48.

    Article  PubMed  Google Scholar 

  • Ruddell, C. L., 1971. The fine structure of oyster agranular amebocytes from regenerating mantle wounds in the Pacific oyster,Crassostrea gigas. — J. Invertebr. Pathol.18, 260–268.

    Article  PubMed  Google Scholar 

  • Shugar, D., 1952. Measurement of lysozyme activity and the ultraviolet inactivation of lysozyme. — Biochim. biophys. Acta8, 302–308.

    PubMed  Google Scholar 

  • Somogyi, M., 1938. Micromethods for the estimation of diatase. — J. biol. Chem.125, 399–414.

    Google Scholar 

  • Sparks, A. K. & Pauley, G. B., 1964. Studies of the normal postmortem changes in the oyster,Crassostrea gigas (Thunberg). — J. Invertebr. Pathol.6, 78–101.

    Google Scholar 

  • Takatsuki, S. A., 1934. On the nature and functions of the amebocytes ofOstrea edulis. — Q. Jl.z. microsc. Sci.76, 379–431.

    Google Scholar 

  • Tamplin, M., Rodrick, G. E., Blake, N. J. & Cuba, T., 1983. The isolation and characterization ofVibrio vulnificus from two Florida estuaries. — Appl. environ. Microbiol.44, 1466–1469.

    Google Scholar 

  • Tappel, A. L., 1969. Lysosomal enzymes and other components. In: Lysosomes in biology and pathology. Ed. by J. T. Dingle & H. B. Bell. North Holland Publ., Amsterdam,2, 207–244.

    Google Scholar 

  • Tietz, N. W., Borden, T. & Stepleton, J. D., 1959. An improved method for the determination of lipase in serum. — Am. J. clin. Path.31, 148–154.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodrick, G.E., Ulrich, S.A. Microscopical studies on the hemocytes of bivalves and their phagocytic interaction with selected bacteria. Helgolander Meeresunters 37, 167–176 (1984). https://doi.org/10.1007/BF01989301

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01989301

Keywords