Skip to main content
  • Published:

The importance of grazing food chain for energy flow and production in three intertidal sand bottom communities of the northern Wadden Sea

Abstract

In three intertidal sand bottom communities of the “Königshafen” (Island of Sylt, North Sea), the biomass production and respiration of phytobenthos, phytoplankton, macrozoobenthos, and in situ community metabolism were measured monthly during 1980. The study sites were characterized by different communities (Nereis-Corophium-belt, seagrass-bed,Arenicola-flat) and by a high abundance of the molluscHydrobia ulvae. Benthic diatoms are the major constituents of plant biomass in theArenicola-flat. In this community, gross primary productivity amounts to 148 g C m−2 a−1. 82 % of this productivity is caused by microbenthos, whereas phytoplankton constitutes only 18 %. In the seagrass-bed, gross primary productivity amounts to 473 g C m−2 a−1. 79 % of this is generated by seagrass and its epiphytes, whereas microphytobenthos contributes 19 %. In theNereis-Corophium-belt, only microphytobenthos is important for biomass and primary productivity (gross: 152 g C m−2 a−1). Annual production of macrofauna proved to be similar in theArenicola-flat (30 g C m−2 a−1) to that in the seagrass-bed (29 g C m−2 a−1). Only one third of this amount is produced in theNereis-Corophium-belt (10 g C m−2 a−1). The main part of secondary production and animal respiration is contributed by grazingH. ulvae. In the seagrass-bed, 83 % of the energy used for production is obtained from the grazing food chain. In theArenicola-flat and theNereis-Corophium-belt, the importance of non-grazing species is greater. A synchrony of seasonal development of plant biomass and monthly secondary production was observed. In theArenicola-flat and the seagrass-bed, where density and production of macrofauna are high, a conspicuous decrease in biomass of microbenthos occurs during the warmer season, whereas in theNereis-Corophium-belt primary production causes an increase in microphytobenthic biomass in summer and autumn. Energy flow through the macrofauna amounts to 69 g C m−2 a−1 in theArenicola-flat, 85 g C m−2 a−1 in the seagrass-bed and 35 g C m−2 a−1 in theNereis-Corophium-belt. Based on the assumption that sources of food are used in proportion to their availability, 49 g C m−2 a−1 (Arenicola-flat), 72 g C m−2 a−1 (seagrass-bed) and 26 g C m−2 a−1 (Nereis-Corophium-belt) are estimated as taken up by the grazing food chain. All three subsystems are able to support the energy requirements from their own primary production and are not dependent on energy import from adjacent ecosystems.

Literature cited

  • Admiraal, W., 1977. Influence of light and temperature on the growth rate of estuarine benthic diatoms in culture. — Mar. Biol.39 1–9.

    Article  Google Scholar 

  • Asmus, H., 1982. Field measurements on respiration and secondary production of a benthic community in the Northern Wadden Sea. — Neth. J. Sea Res.16 403–413.

    Article  Google Scholar 

  • Asmus, H., Theede, H., Neuhoff, H.-G. & Schramm, W., 1980. The role of epibenthic macrofauna in the oxygen budget ofZostera communities from the Baltic Sea. — Ophelia (Suppl.)1 99–111.

    Google Scholar 

  • Asmus, R., 1982. Field measurements on seasonal variation of the activity of primary producers on a sandy tidal flat in the Northern Wadden Sea. — Neth. J. Sea Res.16 389–402.

    Article  Google Scholar 

  • Asmus, R., 1984. Benthische und pelagische Primärproduktion und Nährsalzbilanz — Eine Freiland-untersuchung im Watt der Nordsee. — Ber. Inst. Meeresk. Kiel131 1–148.

    Google Scholar 

  • Banse, K., Nichols, F. H. & May, D. R., 1971. Oxygen consumption by the seabed III. On the role of macrofauna at three stations. — Vie Milieu (Suppl.)22 31–52.

    Google Scholar 

  • Baumfalk, Y. A., 1979. On the pumping activity ofArenicola marina. — Neth. J. Sea Res.13 422–427.

    Article  Google Scholar 

  • Beukema, J. J., 1974. Seasonal changes in the biomass of the macrobenthos of a tidal flat area in the Dutch Wadden Sea. — Neth. J. Sea Res.8 94–107.

    Article  Google Scholar 

  • Beukema, J. J., 1976. Biomass and species richness of macro-benthic animals living on the tidal flat of the Dutch Wadden Sea. — Neth. J. Sea Res.10 236–261.

    Article  Google Scholar 

  • Beukema, J. J., 1981. Quantitative data on the benthos of the Wadden Sea proper. In: Invertebrates of the Wadden Sea. Ed. by N. Dankers, H. Kühl & W. J. Wolff. Balkema, Rotterdam, 134–142. (Rep. Wadden Sea Working Group. 4.).

    Google Scholar 

  • Boysen-Jensen, P., 1919. Valuation of the Limfjord I. Studies on the fish food in the Limfjord. 1909–1917. — Rep. Dan. biol. Stn26 1–44.

    Google Scholar 

  • Branch, G. M. & Branch, M. L., 1980. Competition inBembicium auratum (Gastropoda) and its effect on microalgal standing stock in mangrove muds. — Oecologia46 106–114.

    Article  Google Scholar 

  • Brockmann, C., 1950. Die Watt-Diatomeen der schleswig-holsteinischen Westküste. — Abh. senckenb. naturf. Ges.478 5–26.

    Google Scholar 

  • Cadée, G. C., 1980. Reappraisal of the production and import of organic carbon in the western Wadden Sea. — Neth. J. Sea Res.14 305–322.

    Article  Google Scholar 

  • Cadée, G. C. & Hegeman, J., 1974 a. Primary production of phytoplankton in the Dutch Wadden Sea. — Neth. J. Sea Res.8 240–259.

    Article  Google Scholar 

  • Cadée, G. C. & Hegeman, J., 1974b. Primary production of the benthic microflora living on tidal flats in the Dutch Wadden Sea. — Neth. J. Sea Res.8 260–291.

    Article  Google Scholar 

  • Cadée, G. C. & Hegeman, J., 1979. Phytoplankton primary production, chlorophyll and composition in an inlet of the western Wadden Sea. — Neth. J. Sea Res.13 224–241.

    Article  Google Scholar 

  • Colijn, F. & Buurt, G. van, 1975. Influence of light and temperature on the photosynthetic rate of marine benthic diatoms. — Mar. Biol.31 209–214.

    Article  Google Scholar 

  • Colijn, F., & Koeman, R., 1975. Das Mikrophytobenthos der Watten, Strände und Riffe um den Hohen Knechtsand in der Wesermündung. — Jber. ForschSt. Norderney26 53–83.

    Google Scholar 

  • Colijn, F. & Dijkema, K. S., 1981. Species composition of benthic diatoms and distribution of chlorophyll a on an intertidal flat in the Dutch Wadden Sea. — Mar. Ecol. Prog. Ser.4 9–21.

    Google Scholar 

  • Colijn, F. & Jonge, V. N. de, 1984. Primary production of microphytobenthos in the Ems-Dollard estuary. — Mar. Ecol. Prog. Ser.14 185–196.

    Google Scholar 

  • Connor, M. S., Teal, J. M. & Valiela, I., 1982. The effect of feeding by mud snails,Ilyanassa obsoleta (Say), on the structure and metabolism of a laboratory benthic algal community. — J. exp. mar. Biol. Ecol.65 29–45.

    Article  Google Scholar 

  • Darley, W. M., Montague, C. L., Plumley, F. G., Sage, W. W. & Psalidas, A. T., 1981. Factors limiting edaphic algal biomass and productivity in a Georgia salt marsh. — J. Phycol.17 122–128.

    Article  Google Scholar 

  • Davis, M. W. & Lee II., H., 1983. Recolonization of sediment-associated microalgae and effects of estuarine infauna on microalgal production. — Mar. Ecol. Prog. Ser.11 227–232.

    Google Scholar 

  • Day, J. W., Day, R. H., Barreiro, M. T., Ley-Lou, F. & Madden, C. J., 1982. Primary production in the Laguna de Terminos, a tropical estuary in the Southern Gulf of Mexico. — Oceanologica Acta5 (Suppl.) 269–276.

    Google Scholar 

  • Dörjes, J., 1978. Sedimentologische und faunistische Untersuchungen an Watten in Taiwan II. Faunistische und aktuopaläontologische Studien. — Senckenberg. marit.10 117–143.

    Google Scholar 

  • Duff, S. & Teal, J. M., 1965. Temperature change and gas exchange in Nova Scotia and Georgia salt-marsh muds. — Limnol. Oceanogr.10 67–73.

    Google Scholar 

  • Edler, L., 1979. Recommendations on methods for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. — Baltic mar. Biologists Publ.5 1–38.

    Google Scholar 

  • Es, F. B. van, 1982. Community metabolism of intertidal flats in the Ems-Dollard estuary. — Mar. Biol.66 95–108.

    Article  Google Scholar 

  • Fenchel, T. & Kofoed, L. H., 1976. Evidence for exploitative interspecific competition in mud snails (Hydrobiidae). — Oikos27 367–376.

    Google Scholar 

  • Gieskes, W. W. C. & Kraay, G. W., 1975. The phytoplankton spring bloom in Dutch coastal waters of the North Sea. — Neth. J. Sea Res.9 166–196.

    Article  Google Scholar 

  • Hargrave, B. T., 1969. Similarity of oxygen uptake by benthic communities. — Limnol. Oceanogr.14 801–805.

    Google Scholar 

  • Hargrave, B. T., 1970. The effect of a deposit-feeding amphipod on the metabolism of benthic microflora. — Limnol. Oceanogr.15 21–30.

    Google Scholar 

  • Hargrave, B. T., 1971. An energy budget for a deposit-feeding amphipod. — Limnol. Oceanogr.16 99–103.

    Google Scholar 

  • Hargrave, B. T., 1972. Aerobic decomposition of sediment and detritus as a function of particle surface area and organic content. — Limnol. Oceanogr.17 583–596.

    Google Scholar 

  • Hickman, M. & Round, F. E., 1970. Primary production and standing crops of epispammic and epipelic algae. — Br. phycol. J.5 247–255.

    Google Scholar 

  • Hoek, C. van den, Admiraal, W., Colijn, F. & de Jonge, V. N., 1979. The role of algae and seagrasses in the ecosystem of the Wadden Sea: a review. In: Flora and vegetation of the Wadden Sea. Ed. by W. J. Wolff. Balkema, Rotterdam, 9–118. (Rep. Wadden Sea Working Group. 3.)

    Google Scholar 

  • Hughes, R. N., 1970. An energy budget for a tidal flat population of the bivalveScrobicularia plana (Dan Costa). — J. Anim. Ecol.39 357–370.

    Google Scholar 

  • Jansson, B. O. & Wulff, F., 1977. Ecosystem analysis of a shallow sound in the northern Baltic — a joint study by the Askö group. — Contr. Askö Lab.18, 1–160.

    Google Scholar 

  • Jansson, A.-M., Kautsky, N., Oertzen, J.-A. von, Schramm, W., Sjöstedt, B., Wachenfeld, T. von & Wallentinus, I., 1982. Structural and functional relationships in a southern BalticFucus ecosystem. — Contr. Askö Lab.28, 1–95.

    Google Scholar 

  • Jensen, K. & Siegismund, H. R., 1980. The importance of diatoms and bacteria in the diet ofHydrobia-species. — Ophelia (Suppl.)1, 193–199.

    Google Scholar 

  • Jonge, V. N. de & Postma, H., 1974. Phosphorous compounds in the Dutch Wadden Sea. — Neth. J. Sea Res.8, 139–153.

    Article  Google Scholar 

  • Kofoed, L. H., 1975. The feeding biology ofHydrobia ventrosa Montagu. II. Allocation of the components of the carbon-budget and the significance of the secretion of dissolved organic material. — J. exp. mar. Biol. Ecol.19, 243–256.

    Article  Google Scholar 

  • Kuenzler, E. J., 1961. Structure and energy flow of a mussel population in a Georgia salt marsh. — Limnol. Oceanogr.6, 191–204.

    Google Scholar 

  • Kuipers, B. R., Wilde, P. A. W. J. de & Creutzberg, F., 1981. Energy flow in a tidal flat ecosystem. — Mar. Ecol. Prog. Ser.5, 215–221.

    Google Scholar 

  • Leach, J. H., 1970. Epibenthic algal production in an intertidal mudflat. — Limnol. Oceanogr.15, 1020–1032.

    Google Scholar 

  • Lindeboom, H. J. & Bree, B. H. H. de, 1982. Daily production and consumption in an eelgrass(Zostera marina) community in saline Lake Gravelingen: discrepancies between the O2 and14C method. — Neth. J. Sea Res.16, 362–379.

    Article  Google Scholar 

  • Linke, O., 1939. Die Biota des Jadebusens. — Helgoländer wiss. Meeresunters.1, 201–348.

    Google Scholar 

  • Macnae, W. & Kalk, M., 1962. The fauna and flora of sand flats at Inhaca island, Moçambique. — J. Anim. Ecol.31, 93–128.

    Google Scholar 

  • Mann, K. H., 1965. Energy transformations by a population of fish in river Thames. — J. Anim. Ecol.34, 253–275.

    Google Scholar 

  • Mann, K. H., 1982. Ecology of coastal waters — a system approach. Blackwell, Oxford, 322 pp. (Studies on ecology. 8.)

    Google Scholar 

  • Marshall, M., Oviatt, C. A. & Skauen, D. M., 1971. Productivity of the benthic microflora of shoal estuarine environments in Southern New England. — Int. Revue ges. Hydrobiol.56, 947–956.

    Google Scholar 

  • Mathias, J. A., 1971. Energy flow and secondary production of the amphipodsHyalella azteca andCrangonyx richmondensis occidentalis in Marion Lake, British Columbia. — J. Fish. Res. Bd Can.28, 711–726.

    Google Scholar 

  • Miller, R. J. & Mann, K. H., 1973. Ecological energetics of the seaweed zone in a marine bay on the Atlantic coast of Canada. III. Energy transformations by sea urchins. — Mar. Biol.18, 99–114.

    Article  Google Scholar 

  • Nichols, F. H., 1972. A carbon and energy budget for the numerically dominant macroinvertebratePectinaria californiensis Hartmann, in Puget Sound, Washington, with reference to the larger, rarer coexisting species. Ph. D. thesis, Univ. Wash., Seattle, 164 pp.

    Google Scholar 

  • Nixon, S. W., Oviatt, C. A. & Hale, S. S., 1976. Nitrogen regeneration and the metabolism of coastal marine bottom communities. In: The role of terrestrial and aquatic organisms in decomposition processes. Ed. by J. M. Anderson & A. Macfayden. Blackwell, Oxford, 269–283.

    Google Scholar 

  • Nixon, S. W., Kelly, J. R., Furnas, B. N., Oviatt, C. A. & Hale, S. S., 1980. Phosphorous regeneration and metabolism of coastal marine bottom communities. In: Marine benthic dynamics. Ed. by K. R. Tenore & B. C. Coull. Univ. South Carolina Press, Colubmia, 219–242.

    Google Scholar 

  • Odum, E. P., 1961. The role of tidal marshes in estuarine production. — N. Y. St. Conserv.15, 12–15.

    Google Scholar 

  • Odum, E. P., 1980. Grundlagen der Ökologie. Thieme, Stuttgart,1–2, 1–836.

    Google Scholar 

  • Odum, E. P. & Smalley, A. E., 1959. Comparison of population energy flow of a herbivorous and a deposit-feeding invertebrate in a salt-marsh ecosystem. — Proc. natn. Acad. Sci. U.S.A.45, 617–622.

    Google Scholar 

  • Odum, W. E. & Heald, E. J., 1972. Trophic analysis of an estuarine mangrove community. — Bull. mar. Sci.22, 671–738.

    Google Scholar 

  • Odum, W. E. & Heald, E. J., 1975. The detritus based food web of an estuarine mangrove community. In: Estuarine research. Ed. by L. E. Cronin. Acad. Press, New York,1, 265–286.

    Google Scholar 

  • Pace, M. L., Shimmel, S. & Darley, W. M., 1979. The effect of grazing by a gastropod,Nassarius obsoletus, on the benthic microbial community of a salt marsh mudflat. — Estuar. coast. mar. Sci.9, 121–134.

    Article  Google Scholar 

  • Paine, R. T., 1971. Energy flow in a natural population of the herbivorous gastropodTegula funebralis. — Limnol. Oceanogr.16, 86–98.

    Google Scholar 

  • Pamatmat, M. M., 1968. Ecology and metabolism of a benthic community on an intertidal sandflat. — Int. Revue ges. Hydrobiol.53, 211–298.

    Google Scholar 

  • Pamatmat, M. M., 1975. In situ metabolism of benthic communities. — Cah. Biol. mar.16, 613–633.

    Google Scholar 

  • Pamatmat, M. M., 1977. Benthic community metabolism: A review and assessment of present status and outlook. In: Ecology of marine benthos. Ed. by B. C. Coull. Univ. South Carolina Press, Columbia, 89–111.

    Google Scholar 

  • Pamatmat, M. M. & Banse, K., 1969. Oxygen consumption by the seabed II. In situ measurements to a depth of 180 m. — Limnol. Oceanogr.14, 250–259.

    Google Scholar 

  • Pilson, M. E. Q., Oviatt, C. A. & Nixon, S. W., 1979. Annual nutrient cycles in a marine microcosm. — Symposium on microcosms in ecological research, Savannah River Ecological Laboratory, DOE Symposium Series52, 753–778.

    Google Scholar 

  • Pollack, H., 1979. Populationsdynamik, Produktivität und Energiehaushalt des WattwurmesArenicola marina (Annelida Polychaeta). — Helgoländer wiss. Meeresunters.32, 313–358.

    Google Scholar 

  • Pomeroy, L. R., 1959. Algal productivity in salt marshes of Georgia. — Limnol. Oceanogr.4, 386–397.

    Google Scholar 

  • Pomeroy, L. R., 1960. Primary productivity of Boca Ciega Bay Florida. — Bull. mar. Sci. Gulf Caribb.10, 1–10.

    Google Scholar 

  • Pomeroy, L. R. & Wiegert, R. G., 1981. The ecology of a salt marsh. Springer, New York, 271 pp. (Ecological studies. 38).

    Google Scholar 

  • Pomroy, A. J., Joint, I. R. & Clarke, K. R., 1983. Benthic nutrient flux in a shallow coastal environment. — Oecologia60, 306–312.

    Article  Google Scholar 

  • Postma, H. & Rommets, J. W., 1970. Primary production in the Wadden Sea. — Neth. J. Sea Res.4, 470–493.

    Article  Google Scholar 

  • Propp, M. V., Tarasoff, V. G., Cherbadgi, I. I. & Lootzik, N. V., 1980. Benthic-Pelagic oxygen and nutrient exchange in a coastal region of the Sea of Japan. In: Marine benthic dynamics. Ed. by K. R. Tenore & B. C. Coull. Univ. South Carolina Press, Columbia, 265–284.

    Google Scholar 

  • Raalte, C. D. van, Valiela, I. & Teal, J. M., 1976. Production of epibenthic salt marsh algae: light and nutrient limitation. — Limnol. Oceanogr.21, 862–872.

    Google Scholar 

  • Race, M. S., 1982. Competitive displacement and predation between introduced and native mud snails. — Oecologia54, 337–347.

    Article  Google Scholar 

  • Rasmussen, M. B., Henriksen, K. & Jensen, A., 1983. Possible causes of temporal fluctuations in primary production of the microphytobenthos in the Danish Wadden Sea. — Mar. Biol.73, 109–114.

    Article  Google Scholar 

  • Reise, K., 1978. Experiments on epibenthic predation in the Wadden Sea. — Helgoländer wiss. Meeresunters.31, 55–101.

    Google Scholar 

  • Reise, K., 1981 a. High abundance of small zoobenthos around biogenic structures in tidal sediments of the Wadden Sea. — Helgoländer Meeresunters.34, 413–425.

    Article  Google Scholar 

  • Reise, K., 1981 b. Ökologische Experimente zur Dynamik und Vielfalt der Bodenfauna in den Nordseewatten. — Verh. dt. zool. Ges.74, 1–15.

    Google Scholar 

  • Reise, K., 1982. Long-term changes in the macrobenthic invertebrate fauna of the Wadden Sea: Are polychaetes about to take over? — Neth. J. Sea Res.16, 29–36.

    Article  Google Scholar 

  • Ryther, J. H., 1969. Photosynthesis and fish production in the sea. — Science, N. Y.166, 72–76.

    Google Scholar 

  • Schöttler, U., 1980. Der Energiestoffwechsel bei biotopbedingter Anaerobiose: Untersuchungen an Anneliden. — Verh. dt. zool. Ges.73, 228–240.

    Google Scholar 

  • Smith, R. C. Jr., Burns, K. A. & Teal, J. M., 1972. In situ respiration of benthic communities in Castle Harbour, Bermuda. — Mar. Biol.12, 196–199.

    Article  Google Scholar 

  • Taasen, J. P. & Høisaeter, T., 1981. The shallow-water soft-bottom benthos in Lindaspollene, western Norway 4. Benthic marine diatoms, seasonal density fluctuations. — Sarsia66, 293–316.

    Google Scholar 

  • Teal, J. M., 1962. Energy flow in the salt marsh ecosystem of Georgia. — Ecology43, 614–624.

    Google Scholar 

  • Teal, J. M. & Kanwisher, K., 1961. Gas exchange in a Georgia salt marsh. — Limnol. Oceanogr.6, 389–399.

    Google Scholar 

  • Warwick, R. M. & Price, R., 1975. Macrofauna production in an estuarine mudflat. — J. mar. biol. Ass. U. K.55, 1–18.

    Google Scholar 

  • Wieser, W. & Kanwisher, J., 1961. Zoological and physiological studies on marine nematodes from a small salt marsh near Woods Hole, Massachusetts. — Limnol. Oceanogr.6, 262–270.

    Google Scholar 

  • Witte, J. IJ. & Zijlstra, J. J., 1984. The meiofauna of a tidal flat in the western part of the Wadden Sea and its role in the benthic ecosystem. — Mar. Ecol. Prog. Ser.14 129–138.

    Google Scholar 

  • Wilde, P. A. W. J. de, 1980. Dynamics and metabolism of the benthos of the Wadden Sea. — Hydrobiol. Bull.14 216–218.

    Google Scholar 

  • Winberg, G. G. (Ed.), 1971. Methods for the estimation of production of aquatic animals. Acad. Press, London, 175 pp.

    Google Scholar 

  • Wohlenberg, E., 1937. Die Wattenmeer-Lebensgemeinschaften im Königshafen von Sylt. — Helgoländer wiss. Meeresunters.1 1–92.

    Google Scholar 

  • Wolff, W. J. & Wolf, L. de, 1977. Biomass and production of zoobenthos in the Grevelingen Estuary, the Netherlands. — Estuar. coast. mar. Sci.5 1–24.

    Article  Google Scholar 

  • Zeitzschel, B., 1981. Field experiments on benthic ecosystems. In: Analysis of marine ecosystems. Ed. by A. R. Longhurst. Acad. Press, London, 607–625.

    Google Scholar 

  • Zeitzschel, B. & Davies, J. M., 1978. Benthic growth chambers. — Rapp. P.-v. Réun. Cons. int. Explor. Mer173 31–42.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asmus, H., Asmus, R. The importance of grazing food chain for energy flow and production in three intertidal sand bottom communities of the northern Wadden Sea. Helgolander Meeresunters 39, 273–301 (1985). https://doi.org/10.1007/BF01992775

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01992775

Keywords