Skip to main content
  • Published:

Das Schwimmen der Talitridae (Crustacea, Amphipoda): Funktionsmorphologie, Phänomenologie und Energetik

The swimming of the Talitridae (Crustacea, Amphipoda): Functional morphology, phenomenology, and energetics

Abstract

The Talitridae, well-known for their jumping behaviour, swim with help of the tail-flip. This movement of the abdomen is also known from other amphipods like the Gammaridae which are normally not able to move by jerks outside the water. The suspected homology between the tail-flip when swimming and the jerky movement of the abdomen when jumping gave rise to this investigation, mainly based on high frequency film recordings, on the swimming ofHyale nilssonii, Orchestia cavimana, andTalitrus saltator (family Talitridae) as well as three related species of the families Gammaridae and Corophiidae. Comparative morphometrical and SEM-studies on the habitus of the species and the build of the involved limbs reveal the rather uniform construction of the Gammaridea; functional adaptation to the environment and to the way of living become apparent in minor alterations. The joints of the pleopods and uropods show a clear structural adaptation to the mechanical strain during swimming. The pleopods are moved metachronally in all examined species; angular velocity and rate of beating indicate the efficiency of the swimming movement. In the Talitridae, the metachronal beat of the pleopods is nearly always coupled with the tail-flip while in the Gammaridae and Corophiidae the tail-flip, in addition to the beat of the pleopods, is mostly used for a start from the subsoil or for a change in swimming direction.H. nilssonii, Gammarus locusta, andCorophium volutator, all inhabitants of the tidal zone in the North Sea shallows, turned out to be the “best” swimmers while the (semi-) terrestrially living species,O. cavimana andT. saltator, proved to be rather “poor” swimmers. This clearly indicates the ecological significance of swimming for the different species. Furthermore, the tailflip is found to be of rather subordinate importance. It contributes to a higher velocity if used moderately but is rather obstructive if a large angle is covered while extending and flexing the abdomen. The efficiency of swimming is inversely proportional to the efficiency of jumping in the three talitridean species. Thus, better adaptation to terrestrial life is accompanied by loss of swimming efficiency. Examined under the aspect of locomotional homology, it is concluded that the tail-flip used while swimming is homologous to the jerky movement of the abdomen used for jumping. The comparison of the swimming performance of the examined species with other crustaceans and some fishes illustrates the over-all good results of the Gammaridea.

Literatur

  • Abele, L. G., 1982. Biogeography. In: The biology of Crustacea. Ed. by D. E. Bliss. Acad. Press, New York,1 242–304.

    Google Scholar 

  • Altevogt, R., 1971. Unterklasse Höhere Krebse. In: Grzimeks Tierleben. Hrsg. von B. Grzimek. Kindler, Zürich,1 468–506.

    Google Scholar 

  • Altevogt, R., 1972. Physiological inter-relationships of display and locomotion in fiddler crabs: an evolutionary aspect. — J. mar. biol. Ass. India14 456–467.

    Google Scholar 

  • Arendse, M. C., 1980. Non-visual orientation in the sandhopperTalitrus saltator (Mont.). — Neth. J. Zool.30 535–554.

    Google Scholar 

  • Barnard, J. L., 1969. The families and genera of marine gammaridean Amphipoda. — Bull. U.S. natn. Mus.271 1–535.

    Google Scholar 

  • Barnes, R. D., 1968. Invertebrate zoology. Saunders, Philadelphia, 743 pp.

    Google Scholar 

  • Barr, D. & Smith, B. P., 1980. Stable swimming by diagonal phase synchrony in arthropods. — Can. J. Zool.58 782–795.

    Google Scholar 

  • Bent, S. A. & Chapple, W. D., 1977. Simplification of swimmeret musculature and innervation in the hermit crab,Pagurus pollicarus, in comparison to macrurans. — J. comp. Physiol.118 61–73.

    Article  Google Scholar 

  • Bousfield, E. L., 1973. Shallow-water Gammaridean Amphipoda of New England. Comstock, Ithaca, 312 pp.

    Google Scholar 

  • Bousfield, E. L. & Howarth, F. G., 1976. The cavernicolous fauna of Hawaiian lava tubes. 8. Terrestrial Amphipoda (Talitridae), including a new genus and species with notes on its biology. — Pacif. Insects17 144–154.

    Google Scholar 

  • Bowers, D. E., 1964. Natural history of two beach hoppers of the genusOrchestoidea (Crustacea: Amphipoda) with reference to their complemental distribution. — Ecology45 677–696.

    Google Scholar 

  • Bracht, G., 1980a. The jump ofOrchestia cavimana Heller, 1865 (Crustacea, Amphipoda, Talitridae). — Experientia36 56–57.

    Article  Google Scholar 

  • Bracht, G., 1980b. Vergleichende phänomenologische und energetische Studien zum Sprung der Talitridae (Crustacea, Amphipoda). Diss., Münster, 68 pp.

    Google Scholar 

  • Christian, E., 1979. Der Sprung der Collembolen. — Zool. Jb. (Allg. Zool. Physiol. Tiere)83 457–490.

    Google Scholar 

  • Dahl, E., 1946. Undersökningar över Öresund. XXIX. The Amphipoda of the sound. — Acta. Univ. Lund. (Av. 2)57(6), 1–51.

    Google Scholar 

  • Dahl, E., 1977. The amphipod functional model and its bearing upon systematics and phylogeny. — Zool. Scr.6 221–228.

    Google Scholar 

  • Davis, W. J., 1968. Quantitative analysis of swimmeret beating in the lobster. — J. exp. Biol.48 643–662.

    Google Scholar 

  • Dennell, R., 1933. The habits and feeding mechanism of the amphipodHaustorius arenarius Slabber. — J. Linn. Soc. (Zool.)38 363–388.

    Google Scholar 

  • Dudich, E., 1927. Neue Krebstiere in der Fauna Ungarns. — Archvm balaton., Bpest1 343–387.

    Google Scholar 

  • Gerstaecker, A. & Ortmann, A. E., 1901. Die Klassen und Ordnungen der Arthropoden: Crustacea: Malacostraca: Amphipoda: Flohkrebse. — Bronn's Kl. Ordn. Tierreichs5 (Abt. 2, Hälfte 2), 279–543.

    Google Scholar 

  • Hargreaves, B. R., 1981. Energetics of crustacean swimming. In: Locomotion and energetics in Arthropoda. Ed. by C. F. Herreid & C. R. Fourtner. Plenum Press, New York, 453–490.

    Google Scholar 

  • Hartnoll, R. G., 1960. Swimming in spider crabs of the genusMacropodia. — Nature, Lond.185 181.

    Google Scholar 

  • Hartnoll, R. G., 1970. Swimming in the dromiid crab(Homola barbata). — Anim. Behav.18 588–591.

    Article  Google Scholar 

  • Heinze, K., 1932. Fortpflanzung und Brutpflege beiGammarus pulex L. undCarinogammarus roeselii Gerv. — Zool. Jb. (Allg. Zool. Physiol. Tiere)51 397–440.

    Google Scholar 

  • Hertel, H., 1967. Biologisch-technische Forschungen über strömungstechnisch optimale Formen. Teil 1. — VDI Z.109 837–840.

    Google Scholar 

  • Hessler, R. R., 1982. The structural morphology of walking mechanisms in eumalacostracan crustaceans. — Phil. Trans. R. Soc. (B)296 245–298.

    Google Scholar 

  • Holst, E. von, 1935. Die Koordination der Bewegung bei den Arthropoden in Abhängigkeit von zentralen und peripheren Bedingungen. — Biol. Rev.10 234–261.

    Google Scholar 

  • Hughes, D. A., 1970. Some factors affecting drift and upstream movements ofGammarus pulex. — Ecology51 301–305.

    Google Scholar 

  • Hurley, D. E., 1968. Transition from water to land in amphipod crustaceans. — Am. Zool.8 327–353.

    Google Scholar 

  • Kaestner, A., 1967. Lehrbuch der speziellen Zoologie. Fischer, Stuttgart,1, 849–1242.

    Google Scholar 

  • Kaschek, N., 1984. Vergleichende Untersuchungen über Verlauf und Energetik des Sprunges der Schnellkäfer (Elateridae, Coleoptera). — Zool. Jb. (Allg. Zool. Physiol. Tiere)88 361–385.

    Google Scholar 

  • Kils, U., 1979. Schwimmverhalten, Schwimmleistung und Energiebilanz des antarktischen Krills,Euphausia superba. — Ber. Inst. Meeresk. Kiel65 1–79.

    Google Scholar 

  • Kinzelbach, R., 1972. Zur Verbreitung und Ökologie des Süßwasser-StrandflohsOrchestia cavimana Heller, 1865 (Crustacea: Amphipoda: Talitridae). — Bonn. zool. Beitr.23 267–282.

    Google Scholar 

  • Kohlhage, K., 1983. Lokomotionsstudien an schwimmenden Copepoden. Dipl.-Arb., Münster, 87 pp.

    Google Scholar 

  • Kühl, H., 1933. Die Fortbewegung der Schwimmkrabben mit Bezug auf die Plastizität des Nervensystems. — Z. vergl. Physiol.19 489–521.

    Article  Google Scholar 

  • Lawrence, R. F., 1953. The biology of the cryptic fauna of forests. Balkema, Cape Town, 408 pp.

    Google Scholar 

  • MacMillan, D. L., Silvey, G. & Wilson, I. S., 1981. Coordination of the movements of the appendages in the Tasmanian mountain shrimpAnaspides tasmaniae (Crustacea; Malacostraca; Syncarida). — Proc. R. Soc. (B)212 213–231.

    Google Scholar 

  • Manton, S. M., 1977. The Arthropoda: Habits, functional morphology, and evolution. Clarendon, Oxford, 527 pp.

    Google Scholar 

  • Meadows, P. S. & Reid, A., 1966. The behaviour ofCorophium volutator (Crustacea: Amphipoda). — J. Zool.150 387–399.

    Google Scholar 

  • Mortensen, T., 1921. Biologiske Studier over Sandstrandsfaunaen, saerlig ved de danske Kyster. — Vidensk. Meddr dansk naturh. Foren.74 23–56.

    Google Scholar 

  • Nachtigall, W., 1977. Zur Bedeutung der Reynoldszahl und der damit zusammenhängenden strömungsmechanischen Phänomene in der Schwimmphysiologie und Flugbiophysik. — Fortschr. Zool.24 13–56.

    PubMed  Google Scholar 

  • Nursall, J. R., 1962. Swimming and the origin of paired appendages. — Am. Zool.2 127–141.

    Google Scholar 

  • Pardi, L. & Papi, F., 1961. Kinetic and tactic responses. In: The physiology of Crustacea. Ed. by T. H. Waterman. Acad. Press, New York,2, 365–399.

    Google Scholar 

  • Paul, D. H., 1971. Swimming behaviour of the sand crab,Emerita analoga (Crustacea. Anomura). I. Analysis of the uropod stroke. — Z. vergl. Physiol.75 233–258.

    Article  Google Scholar 

  • Paul, D. H., 1981. Homologies between body movements and muscular contractions in the locomotion of two decapods of different families. — J. exp. Biol.94 159–168.

    Google Scholar 

  • Remane, A., 1955. Morphologie als Homologienforschung. — Verh. dt. zool. Ges.48 159–183. (Zool. Anz., Suppl. 18.)

    Google Scholar 

  • Remane, A., 1961. Gedanken zum Problem: Homologie und Analogie, Praeadaptation und Parallelität. — Zool. Anz.166 447–465.

    Google Scholar 

  • Sars, G. O., 1895. An account of the Crustacea of Norway. Vol. 1: Amphipoda (Plates). Cammermeyer, Christiania, 248 pl.

  • Schellenberg, A., 1929. Körperbau und Grabweise einiger Amphipoden. — Zool. Anz.85 186–190.

    Google Scholar 

  • Schellenberg, A., 1938. Brasilianische Amphipoden, mit biologischen Bemerkungen. — Zool. Jb. (Syst. Ökol. Geogr. Tiere)71 203–218.

    Google Scholar 

  • Schellenberg, A., 1942. Flohkrebse oder Amphipoda. 4. — Tierwelt Dtl.40 1–252.

    Google Scholar 

  • Schlienz, W., 1922. Eine Süsswasser-Orchestia in der Aussenalster in Hamburg. — Arch. Hydrobiol.14 14–150.

    Google Scholar 

  • Schrameck, J. E., 1970. Crayfish swimming: alternating motor output and giant fiber activity. — Science, N.Y.169 698–700.

    Google Scholar 

  • Segerstråle, S. G., 1946. On the occurrence of the amphipod,Gammarus duebeni Lillj. in Finland, with notes on the ecology of the species. — Commentat. biol.9 (18), 1–22.

    Google Scholar 

  • Smallwood, M. E., 1903. The beach flea:Talorchestia longicornis. — Cold Spring Harb. Monogr.1 1–27.

    Google Scholar 

  • Smallwood, M. E., 1905. The salt-marsh amphipod:Orchestia palustris. — Cold Spring Harb. Monogr.3 1–31.

    Google Scholar 

  • Spirito, C. P., 1972. An analysis of swimming behavior in the portunid crabCallinectes sapidus. — Mar. Behav. Physiol.1 261–276.

    Google Scholar 

  • Stephensen, K., 1938. Amphipoda, Tanaidacea und Pycnogonida. — Senckenbergiana20 236–264.

    Google Scholar 

  • Verwey, J., 1927. Einiges aus der Biologie vonTalitrus saltator (Mont.). — Int. Congr. Zool.10 1156–1162.

    Google Scholar 

  • Vester, H., 1986. 1900. Beiträge zur Kenntnis der GattungPhronimopsis. Diss., Leipzig, 31 pp.

    Google Scholar 

  • Vogel, F. Die abdominale Muskulatur vonOrchestia cavimana Heller, 1865 (Crustacea, Amphipoda, Talitridae). — Crustaceana50 (im Druck).

  • Webb, P. W., 1979. Mechanics of escape responses in crayfish(Orconectes virilis). — J. exp. Biol.79, 245–263.

    Google Scholar 

  • Weihs, D., 1977. Periodic jet propulsion of aquatic creatures. — Fortschr. Zool.24 171–175.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogel, F. Das Schwimmen der Talitridae (Crustacea, Amphipoda): Funktionsmorphologie, Phänomenologie und Energetik. Helgolander Meeresunters 39, 303–339 (1985). https://doi.org/10.1007/BF01992776

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01992776