Skip to main content
  • Published:

Electrophoretic approach to the biochemical systematics of gammarids

Abstract

By utilizing the techniques for electrophoretic separation of proteins by vertical starch gels, the biochemical systematics of 10 Gammaridae species obtained from marine, brackish and freshwater habitats was studied. They includedChaetogammarus marinus, Gammarus zaddachi, G. salinus, G. oceanicus, G. tigrinus, G. chevreuxi, G. locusta, G. duebeni duebeni, G. d. celticus, G. pulex pulex, andG. fossarum. For comparison of electrophoretic mobilities selected enzymes (phosphoglucose isomerase, glutamate oxalacetate transaminase, arginine phosphokinase, hexokinase, leucine amino peptidase, mannose 6-phosphate isomerase) were assayed. They were used as diagnostic characters in terms of electrophoretic identities or diversities of most frequent alleles at polymorphic gene loci. These criteria could be applied to estimate intrageneric enzymic variation and degrees of genetic relatedness between the crustacean amphipod species under consideration, thereby complementing traditional morphological classification.

Literature cited

  • Avise, J. C., 1974. Systematic value of electrophoretic data. — Syst. Zool.23, 465–481.

    Google Scholar 

  • Bousfield, E. L., 1977. A new look at the systematics of gammaroidean amphipods of the world. — Crustaceana (Suppl.)4, 282–316.

    Google Scholar 

  • Brewer, G. J., 1970. An introduction to isozyme technique. — Academic Press, London, 186 pp.

    Google Scholar 

  • Bulnheim, H.-P., 1978. Interaction between genetic, external and parasitic factors in sex determination of the crustacean amphipodGammarus duebeni. — Helgoländer wiss. Meeresunters.31, 1–33.

    Google Scholar 

  • Bulnheim, H.-P., 1980. Zum Vorkommen vonGammarus tigrinus im Nord-Ostsee-Kanal. — Arch. FischWiss.30, 67–73.

    Google Scholar 

  • Bulnheim, H.-P. & Scholl, A., 1980. Evidence of genetic divergence between two brackish-water gammaridean sibling species. — Mar. Ecol. Prog. Ser.3, 163–165.

    Google Scholar 

  • Bulnheim, H.-P. & Scholl, A., 1981. Genetic variation between geographic populations of the amphipodsGammarus zaddachi andG. salinus. — Mar. Biol.64, 105–115.

    Google Scholar 

  • Ferguson, A., 1980. Biochemical systematics and evolution. — Blackie, Glasgow, 194 pp.

    Google Scholar 

  • Goedmakers, A., 1972.Gammarus fossarum Koch, 1835: Redescription based on neotype material and notes on its local variation (Crustacea, Amphipoda). — Bijdr. Dierk.42, 124–138.

    Google Scholar 

  • Golikov, A. N. & Tzvetkova, N. L., 1972. The ecological principle of evolutionary reconstruction as illustrated by marine animals. — Mar. Biol.14, 1–9.

    Google Scholar 

  • Gooch, J. L. & Hetrick, S. W., 1979. The relation of genetic structure to environmental structure:Gammarus minus in a Karst area. — Evolution33, 192–206.

    Google Scholar 

  • Harris, H. & Hopkinson, D. A., 1976. Handbook of enzyme electrophoresis in human genetics. North-Holland, Amsterdam.

    Google Scholar 

  • Karaman, S., 1931. 4. Beitrag zur kenntnis der Süßwasseramphipoden. — Bull. Soc. scient. Skopje9, 93–107.

    Google Scholar 

  • Karaman, G. S., 1975. 69. Contribution to the knowledge of the Amphipoda. Revision of theEchinogammarus genera-complex (Fam. Gammaridae). — Arh. biol. nauka, Beograd27, 69–93.

    Google Scholar 

  • Karaman, G. S. & Pinkster, S., 1977. FreshwaterGammarus species from Europe, North Africa and adjacent regions of Asia (Crustacea-Amphipoda). Part I.Gammarus pulex-group and related species. — Bijdr. Dierk.47, 1–97.

    Google Scholar 

  • Kinne, O., 1954. DieGammarus-Arten der Kieler Bucht. — Zool. Jb. (Syst. Ökol. Tiere)82, 405–425.

    Google Scholar 

  • Lincoln, R. J., 1979. British marine Amphipoda: Gammaridae. — British Museum, London, 658 pp.

    Google Scholar 

  • Nyman, L. & Westin, L., 1969. A contribution to the methods of classification for some Mysidae andGammarus species in the Baltic. — Inst. Freshwat. Res. Drottningholm, Rep. No.49, 157–163.

    Google Scholar 

  • Nei, M., 1972. Genetic distance between populations. — Am. Nat.106, 283–292.

    Google Scholar 

  • Pinkster, S., 1972. On members of theGammarus pulex-group (Crustacea-Amphipoda) from Western Europe. — Bijdr. Dierk.42, 164–191.

    Google Scholar 

  • Pinkster, S., Dennert, A. L., Stock, B. & Stock, J. H., 1970. The problem of European freshwater populations ofGammarus duebeni Lilljeborg, 1852. — Bijdr. Dierk.40, 116–147.

    Google Scholar 

  • Rasmussen, E., 1973. Systematics and ecology of the Isefjord marine fauna (Denmark). — Ophelia11, 1–507.

    Google Scholar 

  • Roux, A. L., 1967a. Contribution à l'étude systématique des Gammares de groupepulex (Crustacés Amphipodes): Application des méthodes chromatographiques de dosage des acides amines à des fins taxonomiques. — Bull. biol. Fr. Belg.101, 115–128.

    PubMed  Google Scholar 

  • Roux, A. L., 1967b. Les Gammares du groupepulex (Crustacés Amphipodes). — Essai de systématique biologique. — Thèse Fac. Sci., Univ. Lyon, 172 pp.

  • Schellenberg, A., 1942. Flohkrebse oder Amphipoda. — Tierwelt Dtl.40, 1–252.

    Google Scholar 

  • Scholl, A., Corzilius, B. & Villwock, W., 1978. Beitrag zur Verwandtschaftsanalyse altweltlicher Zahnkarpfen der Tribus Aphaniini (Pisces, Cyprinodontidae) mit Hilfe elektrophoretischer Untersuchungsmethoden. — Z. zool. Syst. Evolutionsforsch.16, 116–132.

    Google Scholar 

  • Segersträle, S., 1947. New observations on the distribution and morphology of the amphipod,Gammarus zaddachi Sexton, with notes on related species. — J. mar. biol. Ass. U. K.27, 219–244.

    Google Scholar 

  • Selander, R. K., Smith, M. H., Yang, S. Y., Johnson, W. E. & Gentry J. B., 1971. IV. Biochemical polymorphism and systematics in the genusPeromyscus. I. Variation in the old field mouse. — Stud. Genet. (VI. Univ. Texas Publ.)6, 49–90.

    Google Scholar 

  • Sexton, E. W., 1912. Some brackish-water Amphipoda from the mouths of the Weser and the Elbe, and from the Baltic. — Proc. zool. Soc. Lond.1912, 656–665.

    Google Scholar 

  • Sket, B., 1971. Zur Systematik und Phylogenie der Gammarini (Amphipoda). — Bull. Sci. Cons. Acads RSF Youg. (A)16, 6.

    Google Scholar 

  • Spooner, G. M., 1947. The distribution ofGammarus species in estuaries. Part I. — J. mar. biol. Ass. U. K.27, 1–52.

    Google Scholar 

  • Stock, J. H., 1967. A revision of the European species of theGammarus locusta-group (Crustacea, Amphipoda). — Zool. Verh., Leiden90, 3–56.

    Google Scholar 

  • Stock, J. H. & Pinkster, S., 1970. Irish and French fresh water populations ofGammarus duebeni subspecifically different from brackish water populations. — Nature, Lond.228, 874–875.

    Google Scholar 

  • Sutcliffe, D. W., 1972. An examination of subspecific differences in the merus of the fifth walking leg of the amphipodGammarus duebeni Lilljeborg. — Freshwat. Biol.2, 203–216.

    Google Scholar 

  • Sutcliffe, D. W. & Shaw, J., 1968. Sodium regulation in the amphipodGammarus duebeni Lilljeborg from freshwater localities in Ireland. — J. exp. Biol.48, 339–358.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulnheim, H.P., Scholl, A. Electrophoretic approach to the biochemical systematics of gammarids. Helgolander Meeresunters 34, 391–400 (1981). https://doi.org/10.1007/BF01995912

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01995912

Keywords