Skip to main content
  • Published:

Cytologische Veränderungen während der Metamorphose des CubopolypenTripedalia cystophora (Cubozoa, Carybdeidae) in die Meduse

Cytological changes during the metamorphosis from the cubopolypTripedalia cystophora (Cubozoa, Carybdeidae) to a medusa

Abstract

The life cycle ofTripedalia cystophora includes a sessile saclike polyp — the asexual reproducing form — and a pelagic tetraradial medusa — the sexually reproducing generation. Medusan development can be induced by temperature increase. It reveals neither budding nor strobilation, but a real metamorphosis of a polyp to only one medusa. According to morphological and anatomical criteria the metamorphosis can be subdivided into four different stages: (1) four longitudinal furrows segment the polyp, the tentacles of which are apportionated on the four quadrants of the body. (2) The subumbrellar cavity develops by invagination of the peristom; the relicts of the fused tentacles change to four rhopalia buds. (3) Medusan architecture including four new interradial tentacles, four rhopalia and the subumbrellar swimming musculature is completed. (4) A young tetraradial medusa starts swimming. Ultrastructural analysis of those metamorphic stages show the different processes of morphogenesis: (a) Gastrodermal cells — absorptive and spumous cells — undergo transdifferentiation and proliferation to medusan cells of the same structure and function. (b) Epidermal cells, excluding the epithel muscle cells, dissociate and are autolytically withdrawn. Dedifferentiated epithel muscle cells — interstitial cells — regain the ability to develop a complete new set of somatic cells, not originally present in the polyp. They include amongst others cross-striated muscle cells, medusan typic nematocyts and particularly sensory and nervous cells. Those cells establish a nervous system with lens-eyes, simple ocelli, statocysts, diffuse nerve net and an additional nerve ring.

Literatur

  • Arneson, A. C. & Cutress, C. E., 1976. Life history ofCarybdea alata Reynaud, 1830 (Cubomedusae). In: Coelenterate ecology and behavior. Ed. by G. O. Mackie. Plenum Press, New York, 227–236.

    Google Scholar 

  • Benzer, S. & Hotta, Y., 1972. Mapping of behavior inDrosophila mosaics. — Nature, Lond.240, 527.

    Google Scholar 

  • Bodo, F. & Bouillon, J., 1968. Étude histologique du développement embryonnaire de quelques hydroméduses de Roscoff:Phialidium hemisphaericum, Obelia spec.,Sarsia eximina, Podocoryne carnea, Gonionemus vertens. — Cah. Biol. mar.9, 69–104.

    Google Scholar 

  • Boelsterli, U., 1978. An electron microscopic study of early developmental stages in the anthomedusaPodocoryne carnea. — J. Morphol.154, 259–290.

    Google Scholar 

  • Bouillon, J. & Werner, B., 1965. Production of medusae buds by the polyp ofRathkea octopunctata. — Helgoländer wiss. Meeresunters.12, 137–148.

    Google Scholar 

  • Brändle, E., 1971. Bedeutung der kolonialen Komponente für die Bildung und Differenzierung der Medusen vonPodocoryne carnea. — Wilhelm Roux Arch. EntwMech. Org.166, 254–286.

    Google Scholar 

  • Brien, P., 1966. Biologie de la reproduction animale. Masson, Paris, 292 pp.

    Google Scholar 

  • Byers, B. & Porter, K. R., 1964. Oriented microtubules in elongating cells of the developing lens rudiment after induction. — Proc. ntn. Acad. Sci. U.S.A.52, 1091–1099.

    Google Scholar 

  • Calder, D. R., 1973. Laboratory observations on the life history ofRhopileum verrilli (Scyphozoa) Rhizostomeae. — Mar. Biol.21, 109–114.

    Google Scholar 

  • Chapman, D. M., 1978. Microanatomy of the cubopolypTripedalia cystophora Conant. — Helgoländer wiss. Meeresunters.31, 128–168.

    Google Scholar 

  • Cloney, R. A., 1966. Cytoplasmic filaments and cell movements: Epidermal cells during ascidian metamorphosis. — J. Ultrastruct. Res.14, 300–328.

    PubMed  Google Scholar 

  • Conant, F. S., 1898. Cubomedusae. — Mem. Biol. Lab. Johns Hopkins Univ.4, 1–61.

    Google Scholar 

  • Duve, C. de & Wattiaux, R., 1965. Functions of lysosomes. — A. Rev. Physiol.28, 435–492.

    Google Scholar 

  • Frey, J., 1968. Die Entwicklungsleistungen der Medusenknospen und Medusen vonPodocoryne M. Sars nach Isolation und Dissoziation. — Wilhelm Roux Arch. EntwMech. Org.60, 428–464.

    Google Scholar 

  • Gohar, H. A. F. & Eisawy, A. M., 1960. The development ofCassiopea andromeda (Scyphozoa Medusae). — Publs mar. biol. Stn Ghardaqa11, 147–190.

    Google Scholar 

  • Hadorn, E., 1965. Problems of determination and transdetermination. — Brookhaven Symp. Biol.18, 148.

    Google Scholar 

  • Hadorn, E., 1968. Transdetermination in cells. — Scient. Am.219 (5), 110.

    Google Scholar 

  • Haeckel, E., 1874. Die Gastraeatheorie, die phylogenetische Klassifikation des Tierreiches und die Homologie der Keimblätter. — Jena. Z. Naturw.8, 1–55.

    Google Scholar 

  • Haynes, J. F. & Burnett, A. L., 1963. Dedifferentiations and redifferentiation of cells inHydra viridis. — Science, N. Y.142, 1481–1485.

    Google Scholar 

  • Hennig, W., 1979. Taschenbuch der speziellen Zoologie. Wirbellose I. Fischer, Jena, 290–294.

    Google Scholar 

  • Hertwig, I. & Hündgen, M., 1984. Gonophorenbildung und Keimzellentwicklung beiHydractinia echinata. — Zool. Jb. (Anat. Ontogenie Tiere)112, 113–136.

    Google Scholar 

  • Kakinuma, Y., 1966. Life cycle of a hydrozoanSarsia tubulosa (Sars). — Bull. mar. biol. Stn Asamushi12, 207–210.

    Google Scholar 

  • Kramp, P. L., 1943. On the development through alternating generations especially in coelenterates. — Vidensk. Meddr dansk. naturh. Foren.107, 13–32.

    Google Scholar 

  • Kühn, A., 1910. Die Entwicklung der Geschlechtsindividuen der Hydromedusen. — Zool. Jb. (Anat. Ontogenie Tiere)30, 43–174.

    Google Scholar 

  • Kühn, A., 1914. Entwicklungsgeschichte und Verwandtschaftsbeziehungen der Hydrozoen. — Ergebn. Forschr. Zool.4, 1–284.

    Google Scholar 

  • Laska, G. & Hündgen, M., 1982. Morphologie und Ultrastruktur der Lichtsinnesorgane vonTripedalia cystophora Conant (Cnidaria, Cubozoa). — Zool. Jb. (Anat. Ontogenie Tiere)108, 107–123.

    Google Scholar 

  • Laska, G. & Hündgen, M., 1984. Die Ultrastruktur des neuromuskulären Systems der Medusen vonTripedalia cystophora undCarybdea marsupialis (Cubozoa). — Zoomorphology104, 163–170.

    Google Scholar 

  • Lentz, T. L., 1965. The fine structure of differentiation of interstitial cells in Hydra. — Z. Zellforsch. mikrosk. anat.67, 547–560.

    PubMed  Google Scholar 

  • Ludwig, F. D., 1969. Die Zooxanthellen beiCassiopea andromeda und ihre Bedeutung für die Strobilation. — Zool. Jb. (Anat. Ontogenie Tiere)86, 238–277.

    Google Scholar 

  • Meurer, M. & Hündgen, M., 1978. Licht- und elektronenmikroskopischer Bau der SüßwassermeduseCraspedacusta sowerbii. — Zool. Jb. (Anat. Ontogenie Tiere)100, 485–508.

    Google Scholar 

  • Naumov, D. V., 1969. Hydroids and Hydromedusae of the USSR. Israel Program for Scientific Translations, Jerusalem, 672 pp.

    Google Scholar 

  • Okada, Y. K., 1927. Note sur l'ontogenie deCharybdea rastonii Haacke. — Bull. biol. Fr. Belg.61, 241–249.

    Google Scholar 

  • Pearse, J. S. & Pearse, V. B., 1978. Vision in cubomedusan jellyfishes. — Science, N. Y.199, 458.

    Google Scholar 

  • Reisinger, E., 1957. Zur Entwicklungsgeschichte und Entwicklungsmechanik vonCraspedacusta (Hydrozoa, Limnotrachylina). — Z. Morph. Ökol. Tiere45, 656–698.

    Google Scholar 

  • Russell, F. S., 1970. The medusae of the British Isles. Univ. Press, Cambridge,2, 1–283.

    Google Scholar 

  • Schmid, V., 1972. Untersuchungen über die Dedifferenzierungsvorgänge bei Medusenknospen und Medusen vonPodocoryne carnea M. Sars. — Wilhelm Roux Arch. EntwMech. Org.169, 281–307.

    Google Scholar 

  • Schmid, V., 1974. Regeneration in medusa buds and medusae of Hydrozoa. — Am. Zool.14, 773–781.

    Google Scholar 

  • Spangenberg, D. B., 1965. A study of strobilation inAurelia aurita under controlled conditions. — J. exp. Zool.160, 1–10.

    Google Scholar 

  • Spemann, H. & Mangold, H., 1924. Über die Induktion von Embryonalanlagen durch Implantation artfremder Organisatoren. — Wilhelm Roux Arch. EntwMech. Org.100, 599–638.

    Google Scholar 

  • Starck, D, 1965. Embryologie. Thieme, Stuttgart, 693 pp.

    Google Scholar 

  • Tardent, P., 1960. Principles governing the process of regeneration in hydroids. In: 18th Growth Symposium. The Ronald Press, New York, 21–43.

    Google Scholar 

  • Tardent, P., 1978. Coelenterata, Cnidaria. In: Morphogenese der Tiere. Hrsg. von F. Seidel. Fischer, Stuttgart,1 (1), 1–415.

    Google Scholar 

  • Thiel, Hj., 1966. The evolution of Scyphozoa. In: The Cnidaria and their evolution. Ed. by W. J. Rees. Rees. Acad. Press, London, 77–117.

    Google Scholar 

  • Thiel, M. E., 1936. Scyphomedusae: Cubomedusae. — Bronns Kl. Ordn. Tierreichs2 (2), 173–307.

    Google Scholar 

  • Weiler-Stolt, B., 1960. Über die Bedeutung der interstitiellen Zellen für die Evolution und Fortpflanzung mariner Hydroiden. — Wilhelm Roux Arch. EntwMech. Org.152, 398–454.

    Google Scholar 

  • Werner, B., 1958. Die Verbreitung und das jahreszeitliche Auftreten der AnthomeduseRathkea octopunctata (M. Sars) sowie die Temperaturabhängigkeit ihrer Entwicklung und Fortpflanzung. — Helgoländer wiss. Meeresunters.6, 137–170.

    Google Scholar 

  • Werner, B., 1973. Spermatozeugmen und Paarungsverhalten beiTripedalia cystophora (Cubomedusae). — Mar. Biol.18, 212–217.

    Google Scholar 

  • Werner, B., 1975. Bau und Lebensgeschichte des Polypen vonTripedalia cystophora (Cubozoa, class. nov. Carybdeidae) und seine Bedeutung für die Evolution der Cnidaria. — Helgoländer wiss. Meeresunters.27, 461–504.

    Google Scholar 

  • Werner, B., 1976. Die neue Cnidarierklasse Cubozoa. — Verh. dt. zool. Ges.69, 230.

    Google Scholar 

  • Werner, B., 1983. Die Metamorphose des Polypen vonTripedalia cystophora (Cubozoa, Carybdeidae) in die Meduse. — Helgoländer Meeresunters.36, 257–276.

    Google Scholar 

  • Werner, B., Cutress, C. E. & Studebaker, J. P., 1971.Life cycle of Tripedalia cystophora Conant (Cubomedusae). — Nature, Lond.232, 582–583.

    Google Scholar 

  • Werner, B., Chapman, D. M. & Cutress, C. E., 1976. Muscular and nervous system of the cubopolyp (Cnidaria). — Experientia,32, 1047–1048.

    Google Scholar 

  • Yamada, T., Rees, D. H. & McDevitt, D. S., 1973. Transformation of iris into lens in vitro and its dependency on neural retina. — Diff. Res. Biol. Div.1, 65–82.

    Google Scholar 

  • Yamaguchi, M. & Hartwick, R., 1980. Early life history ofChironex fleckeri (Class Cubozoa). In: Developmental and cellular biology of coelenterates. Ed. by P. Tardent. Elsevier/North Holland Biomedical Press, Amsterdam, 11–16.

    Google Scholar 

  • Yamasu, T. & Yoshida, M., 1976. Fine structure of complex ocelli of a cubomedusanTamoya bursaria Haeckel. — Cell Tissue Res.170, 325–340.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laska-Mehnert, G. Cytologische Veränderungen während der Metamorphose des CubopolypenTripedalia cystophora (Cubozoa, Carybdeidae) in die Meduse. Helgolander Meeresunters 39, 129–164 (1985). https://doi.org/10.1007/BF01997447

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01997447