Skip to main content
  • Published:

Genetic differentiation among populations of marine algae

Abstract

Most of the information for genetic differentiation among populations of marine algae is from studies on ecotypic variation. Physiological ecotypes have been described for individuals showing different responses to temperature and salinity conditions. Morphological ecotypes have also been found associated with areas differing in wave exposure or different intertidal positions. Little is known on how genetic variation is organized within and between populations of marine algae. The occurrence of ecotypic variation in some species is evidence for genetic differentiation among populations resulting from selection by the local environment. The rate of dispersal and subsequent gene flow will also affect the level of differentiation among populations. In species with low dispersal, differentiation can arise through chance founder events or random genetic drift. The few studies available have shown that species of algae exhibit a range of dispersal capabilities. This information can be useful for predicting the potential level of genetic differentiation among populations of these species. Crossing experiments with several species of algae have shown that populations separated by a considerable distance can be interfertile. In some cases individuals from these populations have been found to be morphologically distinct. Crosses have been used to study the genetic basis of this variation and are evidence for genetic differentiation among the populations sampled. Genetic variation of enzyme proteins detected by electrophoresis provides an additional method for measuring genetic variation within and between populations of marine algae. Electrophoretic methods have previously been used to study systematic problems in algae. However, there have been few attempts to use electrophoretic variation to study the genetic structure of populations of marine algae. This approach is outlined and includes some of the potential problems associated with interpreting electrophoretic data. Studies of electrophoretic variation in natural populations ofEnteromorpha linza from Long island Sound are used as an example. This species was found to reproduce only asexually. Despite a dispersing spore stage, genetic differentiation was found on a microgeographic scale and was correlated with differences in the local environment of some of the populations. Similar studies on other species, and especially sexually reproducing species, will add to a growing understanding of the evolutionary genetics of marine algae.

Literature cited

  • Amsler, C. D. & Searles, R. B., 1980. Vertical distribution of seaweed spores in a water column offshore of North Carolina. — J. Phycol.16 617–619.

    Article  Google Scholar 

  • Anderson, E. K. & North, W. J., 1966. In situ studies of spore production and dispersal in the giant kelp,Macrocystis. — Proc. int. Seaweed Symp.5 73–86.

    Google Scholar 

  • Avise, J. C., 1975. Systematic value of electrophoretic data. — Syst. Zool.23 465–481.

    Google Scholar 

  • Bolton, J. J., 1979. Estuarine adaptation in populations ofPilayella littoralis (L.) Kjellm. (Phaeophyta, Ectocarpales). — Estuar. coast. mar. Sci.9 273–280.

    Article  Google Scholar 

  • Bolton, J. J., 1983. Ecoclinal variation inEctocarpus siliculosus (Phaeophyceae) with respect to temperature growth optima and survival imits. — Mar. Biol.73 131–138.

    Article  Google Scholar 

  • Bolton, J. J., Germann, I. & Lüning, K., 1983. Hybridization between Atlantic and Pacific representatives of the sectionSimplices ofLaminaria (Phaeophyta). — Phycologia22 133–140.

    Google Scholar 

  • Bradshaw, A. D., 1971. Plant evolution in extreme environments. In: Ecological genetics and evolution. Ed. by R. Creed. Blackwell, Oxford, 20–50.

    Google Scholar 

  • Burton, R. S., 1983. Protein polymorphisms and genetic differentiation of marine invertebrate populations. — Mar. Biol. Lett.4 193–206.

    Google Scholar 

  • Chapman, A. R. O., 1974. The genetic basis of morphological differentiation in someLaminaria populations. — Mar. Biol.24, 85–91.

    Article  Google Scholar 

  • Chapman, A. R. O., 1975. Inheritance of mucilage canals inLaminaria (Section Simplices) in eastern Canada. — Br. phycol. J.10 219–223.

    Google Scholar 

  • Cheney, D. P., 1985. Electrophoresis. In: Handbook of phycological methods: Ecological methods for macroalgae. Ed. by M. Littler & D. Littler. Cambridge Univ. Press, Cambridge (in press.)

    Google Scholar 

  • Cheney, D. P. & Babbel, G., 1978. Biosystematic studies of the red algal genusEuchema. I. Electrophoretic variation among Florida populations. — Mar. Biol.47 251–264.

    Article  Google Scholar 

  • Dayton, P. K., 1973. Dispersion, dispersal and persistence of the annual intertidal algaPostelsia palmaeformis Ruprecht. — Ecology54 433–438.

    Google Scholar 

  • Deysher, L. & Norton, T. A., 1981. Dispersal and colonization inSargassum muticum. — J. exp. mar. Biol. Ecol.56 179–196.

    Article  Google Scholar 

  • Druehl, L. D. & Kemp, L., 1982. Morphological and growth responses of geographically isolatedMacrocystis integrifolia populations when grown in a common environment. — Can. J. Bot.60 1409–1413.

    Google Scholar 

  • Ehrlich, P. R. & Raven, P. H., 1969. Differentiation of populations. — Science, N.Y.165 1228–1232.

    Google Scholar 

  • Endler, J. A., 1977. Geographic variation, speciation, and clines. Princeton Univ. Press, Princeton, 246 pp.

    Google Scholar 

  • Espinoza, J. & Chapman, A. R. O., 1983. Ecotypic differentiation ofLaminaria longicruris in relation to seawater nitrate concentration. — Mar. Biol.74 213–218.

    Article  Google Scholar 

  • Ewing, E. P., 1977. Selection at the haploid and diploid phases: Cyclical variation. — Genetics87 195–208.

    Google Scholar 

  • Francke, J. A., 1982. Morphological plasticity and ecological range in threeStigeoclonium species (Chlorophyceae; Chaetophorales). — Br. phycol. J.17 117–134.

    Google Scholar 

  • Francke, J. A. & Rheberger, L. J., 1982. Euryhaline ecotypes in some species ofStigeoclonium. — Br. phycol. J.17 135–145.

    Google Scholar 

  • Gerard, V. A. & Mann, K. H., 1979. Growth and production ofLaminaria longicruris (Phaeophyta) populations exposed to different intensities of water movement. — J. Phycol.15 33–41.

    Article  Google Scholar 

  • Gottlieb, L. D., 1977. Electrophoretic evidence and plant systematics. — Ann. Mo. bot. Gdn64 161–180.

    Google Scholar 

  • Guiry, M. D. & West, J. A., 1983. Life history and hybridization studies onGigartina stellata andPetrocelis cruenta (Rhodophyta) in the North Atlantic. — J. Phycol.19 474–494.

    Article  Google Scholar 

  • Harris, H. & Hopkinson, D. A., 1976. Handbook of enzyme electrophoresis in human genetics. North-Holland Publ., Amsterdam.

    Google Scholar 

  • Hedrick, P. W., 1971. A new approach to measuring genetic similarity. — Evolution25 276–280.

    Google Scholar 

  • Hedrick, P. W., 1975. Genetic similarity and distance: comments and comparisons. — Evolution29 362–366.

    Google Scholar 

  • Innes, D. J., 1983. Genetic variation and adaptation in the asexually reproducing algaEnteromorpha linza. Ph. D. Diss., State Univ. of New York, 203 pp.

  • Innes, D. J. & Yarish, C., 1984. Genetic evidence for the occurrence of asexual reproduction in populations ofEnteromorpha linza (L.) J. Ag. (Chlorophyta, Ulvales) from Long Island Sound. — Phycologia23 311–320.

    Google Scholar 

  • Jones, W. E. & Babb, M. S., 1968. The motile period of swarmers ofEnteromorpha intestinalis (L.) Link. — Br. phycol. Bull.3 525–528.

    Google Scholar 

  • Kapraun, D. F., 1979. Comparative studies ofPolysiphonia urceolata from three North Atlantic sites. — Norw. J. Bot.26 269–276.

    Google Scholar 

  • Lewontin, R. C., 1974. The genetic basis of evolutionary change. Columbia Univ. Press, New York, 346 pp.

    Google Scholar 

  • Lüning, K., Chapman, A. R. O. & Mann, K. H., 1978. Crossing experiments in the non-digitate complex ofLaminaria from both sides of the Atlantic. — Phycologia17 293–298.

    Google Scholar 

  • Malinowski, K. C., 1974.Codium fragile: The ecological and population biology of a colonizing species. Ph. D. Diss., Yale Univ., 135 pp.

  • Mathieson, A. C., Norton, T. A. & Neushul, M., 1981. The taxonomic implications of genetic and environmentally induced variations in seaweed morphology. — Bot. Rev.47 313–347.

    Google Scholar 

  • Meer, J. P. van der & Todd, E. R., 1980. The life history ofPalmeria palmata in culture. A new type for the Rhodophyta. — Can J. Bot.58 1250–1256.

    Google Scholar 

  • Miura, W., Fujio, Y. & Suto, S., 1979. Genetic differentiation between the wild and cultured populations ofPorphyra yezoensis. — Tohoku J. agric. Res.30 114–125.

    Google Scholar 

  • Müller, D. G., 1979. Genetic affinity ofEctocarpus siliculosus (Dillw.) Lyngb. from the Mediterranean, North Atlantic and Australia. — Phycologia18 312–318.

    Google Scholar 

  • Nei, M., 1972. Genetic distance between populations. — Am. Nat.106 283–292.

    Article  Google Scholar 

  • Nei, M., 1975. Molecular population genetics and evolution. North-Holland Publ., Amsterdam, 288 pp.

    Google Scholar 

  • Norton, T. A., Mathieson, A. C. & Neushal, M., 1981. Morphology and environment. In: The biology of seaweeds. Ed. by C. S. Lobban & M. J. Wynne. Blackwell, Oxford, 421–451.

    Google Scholar 

  • Norton, T. A., Mathieson, A. C. & Neushal, M., 1982. A review of some aspects of form and function in seaweeds. — Botanica mar.25 501–510.

    Google Scholar 

  • Oliver, C. G., 1972. Genetic and phenotypic differentiation and geographic distance in four species of Lepidoptera. — Evolution26 221–241.

    Google Scholar 

  • Paine, R. T., 1979. Disaster, catastrophe, and local persistence of the sea palmPostelsia palmaeformis. — Science, N. Y.205 685–687.

    Google Scholar 

  • Paula, E. J. de & Oliveira, E. C. de, 1982. Wave exposure and ecotypical differentiation inSargassum cymosum (Phaeophyta, Fucales). — Phycologia21 145–153.

    Google Scholar 

  • Reed, R. H. & Russell, G., 1979. Adaptation to salinity stress in populations ofEnteromorpha intestinalis (L.) Link. — Estuar. coast. mar. Sci.8 251–258.

    Article  Google Scholar 

  • Rueness, J., 1973. Speciation inPolysiphonia (Rhodophyceae, Ceramiales) in view of hybridization experiments:P. hemisphaerica andP. boldii. — Phycologia12 107–109.

    Google Scholar 

  • Rueness, J., 1978. Hybridization in red algae. In: Modern approaches to the taxonomy of Red and Brown Algae. Ed. by D. E. G. Irvine & J. H. Price. Acad. Press, London, 247–262.

    Google Scholar 

  • Rueness, J. & Rueness, M., 1975. Genetic control of morphogenesis in two varieties ofAntithamnion plumula (Rhodophyceae, Ceramiales). — Phycologia14 81–85.

    Google Scholar 

  • Russell, G. & Bolton, J. J., 1975. Euryhaline ecotypes ofEctocarpus siliculosus (Dillw.) Lyngb. — Estuar. coast. mar. Sci.3 91–94.

    Article  Google Scholar 

  • Russell, G. & Fielding, A. H., 1981. Individuals, populations and communities. In: The biology of seaweeds. Ed. by C. S. Lobban & M. J. Wynne. Blackwell, Oxford, 394–411.

    Google Scholar 

  • Russell, G. & Morris, O. P., 1970. Copper tolerance in the marine fouling alga,Ectocarpus siliculosus. — Nature, Lond.228 288–289.

    Google Scholar 

  • Shaw, C. & Prasad, R., 1970. Starch gel electrophoresis of enzymes — A compilation of recipies. — Biochem. Genet.4 297–320.

    PubMed  Google Scholar 

  • Sideman, E. J. & Mathieson, A. C., 1983. Ecological and genecological distinctions of a high intertidal dwarf form ofFucus distichus (L.) Powell in New England. — J. exp. mar. Biol. Ecol.72 171–188.

    Article  Google Scholar 

  • Silva, M. W. R. N. de & Burrows, E. M., 1973. An experimental assessment of the status of the speciesEnteromorpha intestinalis (L.) Link andEnteromorpha compressa (L.) Grev. — J. mar. biol. Ass. U. K.53 895–904.

    Google Scholar 

  • Sneath, P. H. A. & Sokal, R. R., 1973. Numerical taxonomy. Freeman, San Francisco, 573 pp.

    Google Scholar 

  • Stebbins, G. L., 1950. Variation and evolution in plants. Columbia Univ. Press, New York, 643 pp.

    Google Scholar 

  • Sundene, O., 1975. Experimental studies on form variation inAntithamnion plumula (Rhodophyceae). — Norw. J. Bot.22 35–42.

    Google Scholar 

  • West, J. A., Polanshek, A. R. & Shevlin, D. E., 1978. Field and culture studies onGigartina agardii (Rhodophyta). — J. Phycol.14 416–426.

    Google Scholar 

  • Wilkinson, M., 1974. Investigations on the autecology ofEugomontia sacculata Kornm. a shell boring alga. — J. exp. mar. Biol. Ecol.16 19–27.

    Article  Google Scholar 

  • Yarish, C. & Edwards, P., 1982. A field and cultural investigation of the horizontal and seasonal distribution of estuarine red algae of New Jersey. — Phycologia21 112–124.

    Google Scholar 

  • Yarish, C., Edwards, P. & Casey, S., 1979. A culture study of salinity responses in ecotypes of two estuarine red algae. — J. Phycol.15 341–346.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Innes, D.J. Genetic differentiation among populations of marine algae. Helgoländer Meeresunters 38, 401–417 (1984). https://doi.org/10.1007/BF02027689

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02027689

Keywords