Skip to main content
  • Published:

Untersuchungen über die Auswirkung kommunaler Abwässer auf das benthische Ökosystem mariner Watten

Investigations on the effects of domestic sewage on the benthic ecosystem of marine intertidal flats

Abstract

The influence of domestic sewage on intertidal sand and mud flat benthic communities has been studied at three minor outfalls around the North Sea island of Sylt (F. R. Germany) and at the main outfall of Vancouver, B. C. (Canada). During high tide, domestic waste water was found at the water surface due to its lower specific gravity. Consequently, O2 depletion and salinity decrease occured mainly in surface waters. Oxygen deficiency prevailed in the sediment-water layer, when settled sewage particles were re-suspended by strong tidal currents. This resulted in anaerobic conditions at the sediment surface for up to 40% of the day. Substantial pH decrease and increase in seston load of the water were observed only along the sewage channels and around the outlets when large quantities of sewage were discharged. The amount of particulate organic material increased up to 10% and more in muddy sediments due to sedimentation of sewage sludge. Considerable eutrophication of the mud flats resulted from nutrient load of the sewage and from decomposition of faecal material deposited on the sediments. The vertical distribution of microalgae in the sediment was not influenced by sewage. Primary productivity of microalgae on the sediment surface was positively correlated with the degree of pollution. In heavily and mediumly polluted zones, heterotrophic bacterial production exceeded primary production rates at the sediment surface. Compared with unpolluted intertidal flats the number of macrobenthic species was not reduced in polluted mud flats. In regard to overall species abundance, the macrofauna associations of the disposal area showed three distinct zones: (1) Heavy pollution around the outfall resulted in a degradation zone either without benthic invertebrates or with a very low density of individuals; (2) medium polluted areas were characterized by a zone of maximum density; (3) with decreasing or diminishing pollution the number of individuals returned to normal values (“background values”). The distribution of species within these zones indicated a significant difference between the response of the “channel fauna” and the “flat fauna” to pollution: while the number of species increased continously inside the channels with decreasing pollution, the species variety of the tidal flats was positively correlated with the number of individuals. The diversity of the benthos inside the channels was negatively correlated with the degree of pollution, whereas the diversity indices for the fauna on the tidal flats increased quickly from the centre of pollution, remained at a high level in the medium polluted zone, and decreased again to the area of diminishing pollution. The number of dominating species in the sewage channel increased from the outlet towards the low-tide level, with ratios of 0.9 to 0.33; on the flats the number remained constant throughout the three zones, with maximum ratios of 0.5, demonstrating that no qualitative changes for the macrobenthos of intertidal flats result from domestic sewage disposals. In polluted intertidal flats the macrobenthos is dominated by muddy-sand species whose adaptability to varying sedimentary factors, such as grain size distribution and content of organic material (coefficients of variability: 50.7 and 45.7%, respectively), is relatively high compared with mud and sand species. A special indicator community for polluted intertidal areas does not exist. Intensified waste-water treatment prior to discharge reduced the size of the degradation zone around the outfalls while it simultaneously caused a lower density of the macrobenthos in the medium polluted zone.

Zitierte Literatur

  • Akeson, B., 1970.Ophryotrocha labronica as a test animal for the study of marine pollution. Helgoländer wiss. Meeresunters.20, 293–303.

    Article  Google Scholar 

  • Anderson, K. J. & Read, P. A., 1974. Pollution studies in the Firth of Forth. Mar. Pollut. Bull.5, 121–125.

    Article  Google Scholar 

  • Anderson, S. S., 1972. The ecology of Morecambe Bay. II. Intertidal invertebrates and factors affecting their distribution. J. appl. Ecol.9, 161–178.

    Google Scholar 

  • Anger, K. 1975 a. Benthos und Abwasser. Die Auswirkung kommunaler Abwässer auf ein ufernahes Partialökosystem der westlichen Ostsee. Diss., Univ. Kiel, 327 pp.

  • — 1975b. On the influence of sewage pollution on inshore benthic communities in the South of Kiel Bay. 2. Quantitative studies on community structure. Helgoländer wiss. Meeresunters.27, 408–438.

    Article  Google Scholar 

  • — 1977. Benthic invertebrates as indicators of organic pollution in the western Baltic Sea. Int. Revue ges. Hydrobiol.62, 245–254.

    Google Scholar 

  • Ankel, F., 1962.Hydrobia ulvae undHydrobia ventrosa als Wirte larvaler Trematoden. Vidensk. Meddr. dansk naturh. Foren.124, 1–100.

    Google Scholar 

  • Bagge, P., 1969. Effects of pollution on estuarine ecosystems. I. and II. Merentutkimuslait. Julk.228, 1–129.

    Google Scholar 

  • Balogh, H., 1958. Lebensgemeinschaften der Landtiere. Akademie Verlag, Berlin, 560 pp.

    Google Scholar 

  • Banse, K. & Hobson, K. D., 1974. Benthic errantiate polychaetes of British Columbia and Washington. Bull. Fish. Res. Bd Can.85, 1–111.

    Google Scholar 

  • Barnard, J. L., 1959. Estuarine amphipods. Part II. Occ. Pap. Allan Hancock Fdn21, 13–69.

    Google Scholar 

  • — 1969. The families and genera of marine gammaridean amphipoda. Bull. U. S. nat. Mus.271, 1–525.

    Google Scholar 

  • Barrett, G. W. P., 1969. The effects of an acute insecticide stress on a semi-enclosed grassland ecosystem. Ecology49, 1019–1035.

    Google Scholar 

  • B. C. Research, 1974. Environmental studies at Iona Island. Rep. B. C. Research, Vancouver, Canada, Div. Appl. Biol.1, 1–55.

    Google Scholar 

  • —, 1975. Environmental studies at Iona Island. Rep. B. C. Research, Vancouver, Canada, Div. Appl. Biol.2, 1–162.

    Google Scholar 

  • Bechtel, T. J. & Copeland, B. J., 1970. Fish species diversity indices as indicators of pollution in Galveston Bay, Texas. Contr. mar. Sci.15, 103–132.

    Google Scholar 

  • Berkeley, E. & Berkeley, C., 1952. Annelida, Polychaeta Errantia. Can. Pacif. Fauna96, 1–100.

    Google Scholar 

  • Beukema, J. J., 1974. Seasonal changes in the biomass of the macrobenthos of a tidal flat area in the Dutch Wadden Sea. Neth. J. Sea Res.8, 94–107.

    Article  Google Scholar 

  • —, 1976. Biomass and species richness of the macrobenthic animals living on the tidal flats of the Dutch Wadden Sea. Neth. J. Sea Res.10, 236–261.

    Article  Google Scholar 

  • Beyer, F., 1968. Zooplankton, zoobenthos, and bottom sediments as related to pollution and water exchange in the Oslofjord. Helgoländer wiss. Meeresunters.17, 496–509.

    Article  Google Scholar 

  • Bianchi, A. J. M., 1973. Variations de la concentration bacteriénne dans les eaux et les sédiments littoraux. Mar. Biol.22, 23–29.

    Article  Google Scholar 

  • Blegvad, H., 1932. Investigations of the bottom fauna of drains in the Sound. Rep. Dan. biol. Stn37, 1–20.

    Google Scholar 

  • Bloom, S. A., Simon, J. L. & Hunter, V. D., 1972. Animal-sediment relations and community analysis of a Florida estuary. Mar. Biol.13, 43–56.

    Google Scholar 

  • Boesch, D. F., 1972. Species diversity of marine macrobenthos in the Virginia area. Chesapeake Sci.13, 206–211.

    Google Scholar 

  • Borowitzka, M. A., 1972. Intertidal algal species diversity and effect of pollution. Aust. J. mar. Freshwat. Res.23, 73–84.

    Google Scholar 

  • Brinkhurst, R. O., 1966. The use of aquatic oligochaeta worms in the detection assessment of water pollution. World Health Organisation/EBL/62,70, 1–20.

    Google Scholar 

  • Buchmann, J. B. & Longbottom, M. R., 1970. The determination of organic matter in marine muds: the effect of the presence of coal and of the routine determination of protein. J. exp. Biol. Ecol.5, 158–169.

    Article  Google Scholar 

  • Burkholder, P. A., Repark, A. & Siebert, G., 1965. Studies on some Long Sound littoral communities of microorganisms and their primary productivity. Bull. Torrey bot. Club92, 378–402.

    Google Scholar 

  • Cadée, G. C. & Hegeman, J., 1974. Primary production of the benthic microflora living on tidal flats in the Dutch Wadden Sea. Neth. J. Sea Res.8, 260–291.

    Article  Google Scholar 

  • Caspers, H., 1969. Der Einfluß der Elbe auf die Verunreinigung der Nordsee. Helgoländer wiss. Meeresunters.17, 422–434.

    Article  Google Scholar 

  • Cavalli-Sforza, L., 1968. Biometrie. Fischer, Stuttgart, 211 pp.

    Google Scholar 

  • Clay, E., 1967a. Literature survey of the common fauna of estuaries. 3.Pygospio elegans. I. C. I. Paints Div., Marine Research Station, Brixham, Devon, 1–12. (Mimeogr.).

    Google Scholar 

  • —, 1967b. Literature survey of the common fauna of estuaries. 15.Corophium volutator. I. C. I. Paints Div., Marine Research Station, Brixham, Devon, 1–21. (Mimeogr.).

    Google Scholar 

  • Coastal Water Research Project, 1977. Southern California Coastal Water Research Project. A. Rep.1977, 1–253.

  • Crawford, G. I., 1937. A review of the amphipod genusCorophium, with notes on the British species. J. mar. biol. Ass. U. K.21, 589–630.

    Google Scholar 

  • Croft, J. E., 1960. Pollution of coastal and estuarial waters. J. Proc. Inst. Sew. Purif.4, 431–438.

    Google Scholar 

  • Dale, N. G., 1974. Bacteria in intertidal sediments: Factors related to their distribution. Limnol. Oceanogr.19, 509–518.

    Google Scholar 

  • Day, J. H., 1967. A monograph on the Polychaeta of Southern Africa. Part I, II. Publs Br. Mus. nat. Hist.656, 1–378.

    Google Scholar 

  • Dörjes, J., 1970. Das Watt als Lebensraum. In: Das Watt. Hrsg. von H. Reineck, Kramer, Frankfurt, 71–105.

    Google Scholar 

  • Downing, A. L. & Wheatland, A. B., 1962. Fundamental considerations in biological treatment of effluents. Trans. Instn chem. Engrs40, 91 pp.

    Google Scholar 

  • Duedall, J. W., Bowman, M. J. & O'Connors jr., H. B., 1975. Sewage sludge and ammonium concentrations in the New York Bight apex. Estuar. coast. mar. Sci.3, 457–463.

    Article  Google Scholar 

  • Duff, S. & Teal, J. M., 1965. Temperature change and gas exchange in Nova Scotia and Georgia saltmarsh muds. Limnol. Oceanogr.10, 67–73.

    Google Scholar 

  • Eberhardt, L. L., 1969. Some aspects of species diversity models. Ecology50, 503–505.

    Google Scholar 

  • Edwards, R. W. & Rolley, H. L. J., 1965. Oxygen consumption of river muds. J. Ecol.53, 1–19.

    Google Scholar 

  • Essink, K., 1972. Onderzock naar de gevolgen van lozing van ongezuiverd industrieel afvalwater door middel van een persleiding van Hoogkerk naar de Waddenzee. Interimrapport over 1971. Zoölogisch Laboratorium der Rejksuniversiteit te Groningen Z 72/122, 1–24.

    Google Scholar 

  • Fauvel, P., 1923. Polychètes errantes. Faune Fr.5, 1–488.

    Google Scholar 

  • —, 1927. Polychètes sédentaires. Faune Fr.16, 1–494.

    Google Scholar 

  • Felice, F. P., 1959. The effect of wastes on the distribution of bottom invertebrates in the San Francisco Bay estuary. Wasmann J.17, 1–70.

    Google Scholar 

  • Fenchel, T. & Staarup, B. J., 1971. Vertical distribution of photosynthetic pigments and the penetration of light in marine sediments. Oikos22, 172–182.

    Google Scholar 

  • Folk, R. L., 1966. A review of grain-size parameters. Sedimentology6, 73–93.

    Google Scholar 

  • Frankenberg, D. & Westerfield, C. W., 1968. Oxygen demand and oxygen depletion capacity of sediments from Wassaw Sound, Georgia. Bull. Ga. Acad. Sci.26, 160–172.

    Google Scholar 

  • Fraser, J. H., 1932. Observations of the fauna and constituents of an estuarine mud in a polluted area. J. mar. biol. Ass. U. K.18, 69–85.

    Google Scholar 

  • Friedrich, H., 1938. Polychaeta. Tierwelt Nord- u. Ostsee.6 b, 1–201.

    Google Scholar 

  • Friedrich, H., 1965. Meeresbiologie. Borntraeger, Berlin, 436 pp.

  • Gadow, S., 1970. Sedimente und Chemismus. In: Das Watt. Hrsg. von H. Reineck. Kramer, Frankfurt, 23–35.

    Google Scholar 

  • Gargas, E., 1971. “Sun-shade” adaptation in microbenthic algae from the Øresund. Ophelia9, 107–112.

    Google Scholar 

  • —, 1972. Measurements of microalgal primary production (phytoplankton and microbenthos) in the Smalandshavet (Denmark). Ophelia10, 75–89.

    Google Scholar 

  • Georgia water quality control board. 1967. Establishment of water quality standard and classifications for interstate waters in the State of Georgia. Georgia Water Quality Control Board, Atlanta, 145 pp. (Mimeogr.)

    Google Scholar 

  • Gray, J. S., 1974. Animal-sediment relationships. Oceanogr. mar. Biol.12, 223–261.

    Google Scholar 

  • Grøntved, J., 1960. On the productivity of microbenthos and phytoplankton in some Danish fjords. Meddr Kommn Danm. Fisk.-og Havunders.3, 55–92.

    Google Scholar 

  • —, 1962. Preliminary report on the productivity of microbenthos and phytoplankton in the Danish Wadden Sea. Meddr Kommn Danm. Fisk.-og. Havunders.3, 347–378.

    Google Scholar 

  • Gross, M. G., 1972. Marine waste deposits near New York. Mar. Pollut. Bull.3, 61–63.

    Article  Google Scholar 

  • Hargrave, B. T., 1972. Aerobic decomposition of sediment and detritus as a function of particle surface area and organic content. Limnol. Oceanogr.17, 583–596.

    Google Scholar 

  • Hartmann-Schröder, G., 1971. Annelida, Borstenwürmer, Polychaeta. Tierwelt Dtl.58, 1–594.

    Google Scholar 

  • Hauser, B., 1973. Bestandsänderungen der Makrofauna an einer Station im ostfriesischen Watt. Jber., ForschSt. Norderney24, 171–203.

    Google Scholar 

  • Hecht, F., 1933. Der Verbleib der organischen Substanz der Tiere bei meerischer Einbettung. Senkenbergiana15, 165–249.

    Google Scholar 

  • Hill, M. O., 1973. Diversity and eveness: a unifying notation and its consequences. Ecology54, 427–432.

    Google Scholar 

  • Hoos, L. M. & Packman, G. A., 1974. The Fraser River estuary. Status of environmental knowledge to 1974. Environment Canada. Spec. Estuary Ser.1, 1–518.

    Google Scholar 

  • Hopkins, J. T., 1963. A study of the diatoms of the Ouse estuary, Sussex. The movement of the mudflat diatoms in response to some chemical and physical changes. J. mar. biol. Ass. U. K.43, 653–663.

    Google Scholar 

  • Hughes, R. N., 1970. An energy budget for a tidal flat population of the bivalveScrobicularia plana. J. Anim. Ecol.39, 357–381.

    Google Scholar 

  • Hurlebert, S. H., 1969. A coefficient of interspecific association. Ecology50, 1–9.

    Google Scholar 

  • Jacobs, J., 1975. Diversity, stability, and maturity in ecosystems influenced by human activities. In: Unifying concepts in ecology. Ed. by W. H. van Dobben & R. H. Lowe-McConnell. Junk, The Hague, 187–207.

    Google Scholar 

  • Jarvekülg, A. A., 1970. Bottom fauna as an indicator of pollution of the marine benthal in the vicinity of Tallinn. Est. Contr. int. biol. Progr. Acad. Sci. Estn. SSR,1, 158–193.

    Google Scholar 

  • Jenkinson, J. R., 1972. Sludge dumping and benthic communities. Mar. Pollut. Bull.3, 102–105.

    Article  Google Scholar 

  • Johnson, R. G., 1971. Animal-sediment relations in shallow water benthic communities. Mar. Geol.11, 93–104.

    Article  Google Scholar 

  • Johnson, W. K. & Schroepfer, G. J., 1964. Nitrogen removal by nitrification and denitrification. J. Wat. Pollut. Control Fed.36, 1015–1036.

    Google Scholar 

  • Jones, N. S. & Sanders, H. L., 1972. Distribution of Cumacea in the deep Atlantic. Deep Sea Res.19, 737–745.

    Google Scholar 

  • DeJonge, V. N. & Postma, H., 1974. Phosphorus compounds in the Dutsch Wadden Sea. Neth. J. Sea Res.8, 139–153.

    Article  Google Scholar 

  • Knowles, G. et al., 1962. Polarographic measurement of the rate of respiration of natural sediments. Limnol. Oceanogr.7, 481.

    Google Scholar 

  • König, D., 1968. Biologische Auswirkung des Abwassers einer Öl-Raffinerie in einem Vorlandgebiet an der Nordsee. Helgoländer wiss. Meeresunters.17, 321–334.

    Article  Google Scholar 

  • Köster, E., 1964. Granulometrische und morphometrische Meßmethoden an Mineralkörnern, Steinen und sonstigen Stoffen. Enke, Stuttgart, 336 pp.

    Google Scholar 

  • Kolkwitz, R. & Marsson, M., 1908. Ökologie der pflanzlichen Saprobien. Ber. dt. bot. Ges.26, 126–159.

    Google Scholar 

  • —, 1909. Ökologie der tierischen Saprobien. Int. Revue ges. Hydrobiol.2, 126–152.

    Google Scholar 

  • Kolt, J. & Ben Ari, 1968. Bacteriophages as marine pollution indicators. Revue int. Océanogr. méd.9, 203–217.

    Google Scholar 

  • Krumbein, W. E., 1971. Sedimentmikrobiologische Untersuchungen. I. Über die Abhängigkeit der Keimzahl von der Korngröße. Vie Milieu (Suppl.)22, 253–264.

    Google Scholar 

  • Lauckner, G., 1971. Zur Trematodenfauna der HerzmuschelnCardium edule undCardium lamarcki. Helgoländer wiss. Meeresunters.22, 377–400.

    Article  Google Scholar 

  • Leach, J. H., 1970. Epibenthic algal production in an intertidal mudflat, Limnol. Oceanogr.15, 514–521.

    Google Scholar 

  • Lehmusluota, P. O. & Niemi, A., 1977. Effect of fixation with formalin and Lugol's solution on14C measurements of phytoplankton production. Merentutkimuslait. Julk.241, 97–100.

    Google Scholar 

  • Leppäkoski, E., 1968. Some effects of pollution on the benthic environment of the Gullmarsfjord. Helgoländer wiss. Meeresunters.17, 291–301.

    Article  Google Scholar 

  • —, 1975. Assessment of degree of pollution on the basis of macrozoobenthos in marine and brackish-water environments. Acta Acad. åbo. (B)25, 1–90.

    Google Scholar 

  • Levings, C. D. & Coustalin, J. B., 1975. Zonation of intertidal biomass and related benthic data from Sturgeon and Roberts Banks, Fraser River Estuary, British Columbia. Tech. Rep. Fish. Mar. Serv.468, 1–138.

    Google Scholar 

  • Liebmann, H., 1947. Die Notwendigkeit einer Revision des Saprobiensystems und deren Bedeutung für die Wasserbeurteilung. Gesundheitsingenieur68, 33–37.

    Google Scholar 

  • —, 1960, 1962. Handbuch der Frischwasser- und Abwasserbiologie. Oldenbourg, München, 1–2; 588, 1149 pp.

    Google Scholar 

  • Lillelund, K., 1969. Die Bedeutung vonCorophium für die Rückführung von P aus dem Sediment in das freie Wasser. In: Bericht über das Kolloquium “Litoralforschung/Abwasser in Küstennähe”. Deutsche Forsch. Gemeinsch., Bonn, 42–44. (Mimeogr.)

  • Linke, O., 1939. Die Biota des Jadebusenwattes. Helgoländer wiss. Meeresunters.1, 201–348.

    Google Scholar 

  • Longbottom, M. R., 1970. The distribution ofArenicola marina with particular reference to the effects of particle size and organic matter of the sediments. J. exp. mar. Biol. Ecol.5, 138–157.

    Article  Google Scholar 

  • Ludwig, H. F. & Storrs, P. N., 1970. Effects of waste disposal into marine waters. A survey of studies carried out in the last ten years. Wat. Res.4, 709–720.

    Article  Google Scholar 

  • Martin, D. C. & Bella, D. A., 1971. Effect of mixing on oxygen uptake rate of estuarine bottom deposits. J. Wat. Pollut. Control Fed.43, 1865–1876.

    Google Scholar 

  • McArthur, R. H. & McArthur, J. W., 1961. On bird species diversity. Ecology42, 594–598.

    Google Scholar 

  • McMillan, G. L. & Verduin, C., 1953. Photosynthesis of natural communities dominated byCladophora glomerata undUlothrix zonata. Ohio J. Sci.53, 373–377.

    Google Scholar 

  • McNulty, J. K., Work, R. C. & Moor, H. B., 1962. Some relationships between the infauna of the level bottom and the sediments of southern Florida. Bull. mar. Sci. Gulf Caribb.12, 322–332.

    Google Scholar 

  • Moul, E. T. & Mason, D., 1957. Study of diatom populations on sand and mud flats in the Woods Hole area. Biol. Bull. mar. biol. Lab., Woods Hole,113, 351.

    Google Scholar 

  • Muus, B. J., 1967. The fauna of Danish estuaries and lagoons. Meddr Dann. Fisk.-og. Havunders.5, 5–316.

    Google Scholar 

  • Nakajima, F., 1958. Plankton as indicators of sea water pollution. Bull. Inst. publ. Hlth, Tokyo7, 140–145.

    Google Scholar 

  • National Technical Advisory Committee to the Secretary of the Interior, 1968. Water quality criteria. U. S. Government Printing Office, Washington, 234 pp.

    Google Scholar 

  • Newell, R. C., 1970. Biology of intertidal animals. Logos Press, London, 555 pp.

    Google Scholar 

  • Nichols, M. M., 1964. Characteristics of sedimentary environment in Moriches Bay, N. Y. In: Papers in marine geology. Ed. by R. L. Miller. McMillan, New York.

    Google Scholar 

  • O'Connor, J. S., 1972. The benthic macrofauna of Moriches Bay, N. Y. Biol. Bull. mar. biol. Lab., Woods Hole.142, 84–102.

    Google Scholar 

  • Odum, E. P., 1975. Diversity as a function of energy flow. In: Unifying concepts in ecology. Ed. by W. H. Dobben & R. H. Lowe-McConnell. Junk, The Hague, 11–14.

    Google Scholar 

  • Odum, H. T., 1957. Primary production measurements in eleven Florida springs and a marine turtlegrass community. Limnol. Oceanogr.2, 85–97.

    Google Scholar 

  • Oglesby, R. T. & Jamison, D., 1968. Intertidal communities as monitors of pollution. J. sanit. Engng Div. Am. Soc. civ. Engng94, 541–550.

    Google Scholar 

  • Oliff, W. D., Berrisford, C. D., Turner, W. D., Ballard, J. A. & McWilliams, D. C., 1967. The ecology and chemistry of sandy beaches and nearshore submarine sediments of Natal. I. Pollution criteria for sandy beaches in Natal. II. Pollution criteria for nearshore sediments of the Natal coast. Wat. Res.1, 115–129, 131–146.

    Article  Google Scholar 

  • Olsen, T. A. & Burgess, F. J. (Ed.), 1967. Pollution and marine ecology. Wiley Interscience, London, 364 pp.

    Google Scholar 

  • O'Sullivan, A. J., 1971. Ecological effects of sewage discharge in the marine environment. Proc. R. Soc. (B),177, 331–351.

    Google Scholar 

  • Otte, G., 1975. A laboratory key for the identification ofCorophium species (Amphipoda, Corophiidae) from British Columbia. Tech. Rep. Fish. Mar. Serv.519, 1–28.

    Google Scholar 

  • —, 1977. Organische Abwassereinleitungen in Wattengebiete: Versuch einer saprobiellen Wertung. Ergebn. Limnol.9, 139–150.

    Google Scholar 

  • Overbeck, J., 1972. Experimentelle Untersuchungen zur Bestimmung der bakteriellen Produktion im See. Verh. int. Verein. theor. angew. Limnol.18, 176–187.

    Google Scholar 

  • Pamatmat, M. M., 1968. Ecology and metabolism of a benthic community on an intertidal sandflat. Int. Revue ges. Hydrobiol.53, 211–298.

    Google Scholar 

  • —, 1971. Oxygen consumption by the seabed. IV. Shipboard and laboratory experiments. Limnol. Oceanogr.16, 536–550.

    Google Scholar 

  • Patterson, J. & Parsons, T. R., 1963. Distribution of chlorophyll a and degradation products in various marine materials. Limnol. Oceanogr.8, 355–356.

    Google Scholar 

  • Pearson, T. H., 1975. The benthic ecology of Loch Linnhe and Loch Eil, a sea-loch system on the west coast of Scotland. IV. Changes in the benthic fauna attributable to organic enrichment. J. exp. mar. Biol. Ecol.20, 1–41.

    Article  Google Scholar 

  • Perkins, E. J. & Abbott, O. J., 1972. Nutrient enrichment and sand flat fauna. Mar. Pollut. Bull.3, 70–72.

    Article  Google Scholar 

  • Pestrong, R., 1972. Tidal-flat sedimentation at Cooley Landing, Southwest San Francisco Bay. Sediment. Geol.8, 251–288.

    Article  Google Scholar 

  • Postma, H., 1954. Hydrography of the Dutch Wadden Sea. Archs neerl. Zool.10, 405–511.

    Google Scholar 

  • —, 1960. Einige Bemerkungen über den Sinkstofftransport im Ems-Dollart-Gebiet. Verh. K. ned. geol.-mijnb. Genoot.19, 103–110.

    Google Scholar 

  • —, & Kalle, K., 1955. Die Entstehung von Trübungszonen im Unterlauf von Flüssen, speziell im Hinblick auf die Verhältnisse in der Unterelbe. Dt. hydrogr. Z.8, 137–144.

    Article  Google Scholar 

  • Quayle, D. B., 1960. The intertidal bivalves of British Columbia. B. C. Prov. Mus. Handb.17, 1–117.

    Google Scholar 

  • Reineck, H. E. (Ed.), 1970. Das Watt, Kramer, Frankfurt, 142 pp.

    Google Scholar 

  • Reish, D. J., 1955. The relation of the polychaetous annelids to harbor pollution. U. S. Pub. Health Rep.70, 1168–1174.

    Google Scholar 

  • —, 1957. Effects of pollution on marine life. Ind. Wastes2, 114–118.

    Google Scholar 

  • —, 1959. An ecological study of pollution in Los Angeles-Long Beach Harbors, Calif. Occ. Pap. Allan Hancock Edn22, 1–119.

    Google Scholar 

  • Reish, D. J., 1960. The use of marine invertebrates as indicators of water quality. In: Proceedings of the 1st international conference on waste disposal in the marine environment. Ed. by E. A. Pearson., New York, 92–103.

  • Reish, D. J., 1970. A critical review of the use of marine invertebrates as indicators of varying degrees of marine pollution. FAO techn. conf. on mar. pollut. and its effects on living resources and fishing, Rome, Italy, FIR: MP/70/R-9.

  • —, 1972. The use of marine invertebrates as indicators of varying degrees of marine pollution. In: Marine pollution and sea life. Ed. by M. Ruivo. Fishing News Books, London, 203–207.

    Google Scholar 

  • Remane, A., 1940. Einführung in die zoologische Ökologie der Nord- und Ostsee. Tierwelt Nord- u. Ostsee.1 a, 1–238.

    Google Scholar 

  • Rhoads, D. C. & Young, D. K., 1970. The influence of deposit-feeding organisms on sediment stability and community trophic structure. J. mar. Res.28, 150–177.

    Google Scholar 

  • Rice, T., 1972. Marine shells of the Pacific Northwest. Bradley, Seattle, Wash., 102 pp.

    Google Scholar 

  • Romanenko, W. I., 1964. Heterotrophic assimilation of CO2 by the aquatic microflora. Microbiologia33, 679–683.

    Google Scholar 

  • —, 1964. The potential ability of the bottom microflora to the hererotrophic assimilation of CO2 and to the chemosynthesis. Microbiologia33, 134–139.

    Google Scholar 

  • —, 1965. The relation between the consumption of oxygen and CO2 by heterotrophic bacteria during the growth in the presence of peptone. Microbiologia34, 391–396.

    Google Scholar 

  • Rosenberg, R., 1971. Recovery of the littoral fauna in Saltstkällefjord subsequent to discontinued operations of a sulphite pulp mill. Thalassia jugosl.7, 341–351.

    Google Scholar 

  • —, 1973. Succession in benthic marcrofauna in a Swedish fjord subsequent to the closure of a sulphite pulp mill. Oikos24, 244–258.

    Google Scholar 

  • Sachs, L., 1971. Statistische Auswertungsmethoden. Springer, Berlin, 545 pp.

    Google Scholar 

  • Sanders, H. L., 1958. Benthic studies in Buzzard's Bay. I. Animal-sediment relationships. Limnol. Oceanogr.3, 245–258.

    Google Scholar 

  • —, 1968. Marine benthic diversity: a comparative study. Am. Nat.102, 243–282.

    Article  Google Scholar 

  • SCCWRP, 1973. The ecology of the Southern California Bight: Implications for water quality management. Southern California Coastal Water Research Project. El Segundo, California, 531 pp.

    Google Scholar 

  • Schellenberg, A., 1942. Krebstiere oder Crustacea. IV. Flohkrebse oder Amphipoda. Tierwelt Dtl.40, 1–242.

    Google Scholar 

  • Shannon, C. E. & Weaver, W., 1949. The mathematical theory of communication. Univ. Ill. Press, Urbana, 117 pp.

    Google Scholar 

  • Shelton, R. G. J., 1971. Sludge dumping in the Thames estuary. Mar. Pollut. Bull.2, 24–27.

    Article  Google Scholar 

  • Shoemaker, C. R., 1934 a. The amphipod genusCorophium on the east coast of America. Proc. biol. Soc. Wash.47, 23–32.

    Google Scholar 

  • —, 1934 b. Two new species ofCorophium from the west coast of America. J. Wash. Acad. Sci.24, 356–360.

    Google Scholar 

  • —, 1941. A new genus and a new species of amphipoda from the pacific coast of North America. Proc. biol. Soc. Wash.54, 183–186.

    Google Scholar 

  • —, 1949. The amphipod genusCorophium on the west coast of America. J. Wash. Acad. Sci.39, 66–82.

    Google Scholar 

  • Sorokin, Y. I., 1958. Studies of chemosynthesis in bottom sediments with the use of14C. Microbiologia27, 206–213.

    Google Scholar 

  • —, 1964. On the trophic role of chemosynthesis in water bodies. Int. Revue ges. Hydrobiol.49, 307–324.

    Google Scholar 

  • —, 1965. On the trophic role of chemosynthesis and bacterial biosynthesis in water bodies. Memorie Ist. ital. Idrobiol.18, 187–205.

    Google Scholar 

  • — & Kadota, H. (Ed.), 1972. Techniques for the assessment of microbial production and decomposition in fresh waters. Blackwell, Oxford, 112 pp.

    Google Scholar 

  • Steel, R. G. & Torrie, J. H., 1960. Principles and procedures of statistics. McGraw-Hill, New York, 481 pp.

    Google Scholar 

  • Steemann Nielsen, E., 1952. The use of radio-active carbon (14C) for measuring organic production in the sea. J. Cons. perm. int. Explor. Mer.18, 117–140.

    Google Scholar 

  • —, 1960. Dark fixation of CO2 and measurements of organic productivity. With remarks on chemosynthesis. Physiologia Pl.13, 348–357.

    Google Scholar 

  • —, 1965. On the determination of the radioactivity in14C- ampoules for measuring primary production. Limnol Oceanogr.10, 247–252.

    Google Scholar 

  • Straaten, L. M. J. U. van, 1954. Composition and structure of recent marine sediments in the Netherlands. Leid. geol. Meded.19, 1–110.

    Google Scholar 

  • Strickland, J. D. H. & Parsons, T. R., 1972. A practical handbook of seawater analysis. Bull. Fish. Res. Bd Can.167, 1–310.

    Google Scholar 

  • Stugren, B., 1972. Grundlagen der allgemeinen Ökologie. VEB Fischer, Jena, 223 pp.

    Google Scholar 

  • Swan Wooster Engineering Co. Ltd., 1967. Roberts Bank and Sturgeon Bank harbour study. Topographic maps. Prep. by Lockwood Survey Corp., National Harbours Board, Vancouver, B. C.

  • Tabata, S., Giovando, L. F. & Devlin, D., 1971. Current velocities in the vicinity of the Greater Vancouver sewerage and drainage districts Iona Island outfall-1968. Tech. Rep. Fish. Res. Bd Can.263, 1–86.

    Google Scholar 

  • Taylor, W. R. & Gebelein, C. D., 1966. Plant pigment and light penetration in intertidal sediments. Helgoländer wiss. Meeresunters.13, 229–237.

    Article  Google Scholar 

  • Tebble, N., 1966. British bivalve seashells. British Mus. Nat. Hist., London, 212 pp.

    Google Scholar 

  • Thamdrup, H. M., 1935. Beiträge zur Ökologie der Wattenfauna auf experimenteller Grundlage. Meddr Komn Danm, Fisk-og Havunders.10, 1–125.

    Google Scholar 

  • Thienemann, A., 1941. Leben und Umwelt. Bios12, 1–122.

    Google Scholar 

  • Tietjen, J. H., 1968. Chlorophyll and phaeo-pigments in estuarine sediments. Limnol. Oceanogr.13, 189–192.

    Google Scholar 

  • Trask, P. D., 1930. Mechanical analysis of sediments by centrifuge. Econ. Geol.25, 581–599.

    Google Scholar 

  • Tulkki, P., 1968. Effects of pollution on the benthos of Gotenburg. Helgoländer wiss. Meeresunters.17, 209–215.

    Article  Google Scholar 

  • —, 1969. Die Bodentiere als Indikatororganismen für Verunreinigung in einem Brackwassergebiet. Limnologica7, 79–85.

    Google Scholar 

  • Ushakov, P. V., 1965. Polychaeta of the far-eastern seas of the U.S.S.R. Israel Program Scient. Transl., Jerusalem, 448 pp.

    Google Scholar 

  • Wass, M. L., 1967. Biological and physiological basis of indicator organisms and communities. II. Indicators of pollution. In: Pollution and marine ecology. Ed. by T. A. Olsen & F. J. Burgess, Wiley-Interscience, London, 261–283.

    Google Scholar 

  • Watling, L., Leathem, W., Kinner, P., Wethe, C. & Maurer, D., 1974. Evaluation of sludge dumping off Delaware Bay. Mar. Pollut. Bull.5, 39–42.

    Article  Google Scholar 

  • Weber, E., 1967. Grundriß der biologischen Statistik. Fischer, Stuttgart, 674 pp.

    Google Scholar 

  • Wilhelmi, J., 1915 a. Leitsätze für die Einleitung von Abwässern in das Meer. Wass. Abwass.9, 513–517.

    Google Scholar 

  • —, 1915 b. Untersuchungen, besonders in biologisch-mikroskopischer Hinsicht, über die Abwasserbeseitigung von Küstenorten. Mitt. Landesanst. Wass.-Hyg.20, 114–194.

    Google Scholar 

  • Wilhm, J. L., 1967. Comparison of some diversity indices applied to populations of benthic macroinvertebrates in a stream receiving organic wastes. J. Wat. Pollut. Control Fed.39, 1673–1683.

    Google Scholar 

  • Wohlenberg, E., 1937. Die Wattenlebensgemeinschaften im Königshafen von Sylt. Helgoländer wiss. Meeresunters.1, 1–92.

    Google Scholar 

  • Young, P. H., 1964. Some effects of sewer effluents on marine life. Calif. Fish Game50, 33–41.

    Google Scholar 

  • Ziegelmeier, E., 1957. Die Muscheln (Bivalvia) der deutschen Meeresgebiete. Helgoländer wiss. Meeresunters.6, 1–56.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dissertation aus dem Fachbereich Biologie der Universität Hamburg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otte, G. Untersuchungen über die Auswirkung kommunaler Abwässer auf das benthische Ökosystem mariner Watten. Helgolander Wiss. Meeresunters 32, 73–148 (1979). https://doi.org/10.1007/BF02189893

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02189893