Skip to main content
  • General Aspects
  • Published:

Changes in specific photosynthetic rate of oceanic phytoplankton from the northeast Pacific Ocean

Abstract

The study is based on data (n=244) from light-saturation experiments utilizing artificial incubation under fluorescent light. Values of maximum photosynthetic rate,P max, and the light intensity at which it takes place,I max, are estimated by non-linear regression using stepwise Gauss-Newton iterations. Estimated values ofP max ranged from 0.85 to 5.48 mg C (mg Chla·h)−1;I max varied from 2.35 to 5.52 cal (cm2·h)−1. The effects of time (months) and depth (illumination levels) and their interaction are evaluated by analysis of covariance using a linear model. A significant time-depth interaction is noted: The maximum specific primary productivity occurred in the surface layers during March, at the 50% light level during April, and at 1% level during May. Estimates ofP max from simulated in situ primary productivity experiments for the same period are lower than those from light-saturation experiments. A comparison of data from light-saturation and simulated in situ experiments indicated that effects of duration of experiments and the quality of available light may affect primary productivity data considerably.

Literature Cited

  • Anderson, G. C., 1964. The seasonal and geographic distribution of primary productivity off the Washington and Oregon coasts. Limnol. Oceanogr.9, 284–302.

    Google Scholar 

  • — 1972. Aspects of marine phytoplankton studies near the Columbia River, with special reference to a sub-surface chlorophyll maximum. In: The Columbia River estuary and adjacent ocean waters: bioenvironmental studies. Ed. by A. T. Pruter & D. L. Alverson. Univ. of Washington Press, Seattle, 219–240.

    Google Scholar 

  • —, & Zeutschel, R. P., 1970. Release of dissolved organic matter by marine phytoplankton in coastal and offshore areas of the northeast Pacific Ocean. Limnol. Oceanogr.15, 402–407.

    Google Scholar 

  • Bannister, T. T., 1974. Production equations in terms of chlorophyll concentrations, quantum yield, and upper limit to production. Limnol. Oceanogr.19, 1–12.

    Google Scholar 

  • Banse, K., & Anderson, G. C., 1967. Computation of chlorophyll concentration from spectrophotometric readings. Limnol. Oceanogr.12, 696–697.

    Google Scholar 

  • Barnes, C. A., Duxbury, A. C. & Morse, B. A., 1972. Circulation and selected properties of the Columbia River effluent at sea. In: The Columbia River estuary and adjacent ocean waters: bioenvironmental studies. Ed. by A. T. Pruter & D. L. Alverson. Univ. of Washington Press, Seattle, 41–80.

    Google Scholar 

  • Creitz, G. I. & Richards, F. A., 1955. The estimation and characterization of plankton populations by pigment analyses. III. A note on the use of “Millipore” membrane filters in the estimation of plankton pigments. J. mar. Res.14, 211–216.

    Google Scholar 

  • Curl, H. Jr & Small, L. F., 1965. Variations in photosynthetic assimilation ratios in natural marine phytoplankton communities. Limnol. Oceanogr.10 (Suppl.), R67-R73.

    Google Scholar 

  • Dixon, W. J. (Ed.), 1970. BMD-Biomedical computer programs, X-series supplement. University of California Press, Los Angeles, 260 pp. (Univ. Calif. Publs Automatic Computation3.)

    Google Scholar 

  • Dunstan, W. M., 1973. A comparison of the photosynthesis-light intensity relationship in phylogenetically different marine microalgae. J. exp. mar. Biol. Ecol.13, 181–187.

    Google Scholar 

  • Glooschenko, W. A., Curl, H Jr. & Small, L. F., 1972. Diel periodicity of chlorophyll α concentration in Oregon coastal waters. J. Fish. Res. Bd Can.29, 1253–1259.

    Google Scholar 

  • Hameedi, M. J., 1974. Ouantitative studies of phytoplankton and zooplankton and their interrelationships off Washington and Oregon. Ph. D. Diss., Univ. Washington, Seattle, 287 pp.

    Google Scholar 

  • —, 1976. An evaluation of the effects of environmental variables on marine plankton primary productivity by multivariate regression. Int. Revue ges. Hydrobiol.61, 519–540.

    Google Scholar 

  • Harris, G. P. & Lott, I. N. A., 1973. Light intensity and photosynthetic rates in phytoplankton. J. Fish. Res. Bd Can.30, 1771–1778.

    Google Scholar 

  • Hartley, H. O., 1961. The modified Gauss-Newton method for the fitting of non-linear regression functions by least squares. Technometrics3, 269–280.

    Google Scholar 

  • Jassby, A. D. & Platt, T., 1976. Mathematical formulation of the relationship between photosynthesis and light for plankton. Limnol. Oceanogr.21, 540–547.

    Google Scholar 

  • Lindeman, R. L., 1942. The trophic-dynamic aspect of ecology. Ecology23, 399–418.

    Google Scholar 

  • Nihoul, J. C. J., 1975. Application of mathematical models to the study, monitoring and management of the North Sea. In: Ecological modeling. Resources of the Future, Inc., Washington, D. C., 135–147.

    Google Scholar 

  • Richards, F. A. & Thompson, T. G., 1952. The estimation and characterization of plankton populations by pigment analysis. II. A spectrophotometric method for the estimation of plankton pigments. J. mar. Res.11, 156–172.

    Google Scholar 

  • Ryther, J. G., 1956. Photosynthesis in the ocean as a function of light intensity. Limnol. Oceanogr.1, 61–70.

    Google Scholar 

  • — & Menzel, D. M., 1959. Light adaptation by marine phytoplankton. Limnol. Oceanogr.4, 492–497.

    Google Scholar 

  • — & Yentsch, C. S., 1957. The estimation of phytoplankton production in the oceans from chlorophyll and light data. Limnol. Oceanogr.2, 281–286.

    Google Scholar 

  • Small, L. F., Curl, H. Jr. & Glooschenko, W. A., 1972. Estimates of primary production off Oregon using an improved chlorophyll-light technique. J. Fish. Res. Bd Can.29, 1261–1267.

    Google Scholar 

  • Sokal, R. R. & Rohlf, F. J., 1969. Biometry. Freeman, San Francisco, 776 pp.

    Google Scholar 

  • Steele, J. H., 1962. Environmental control of photosynthesis at sea. Limnol. Oceanogr.7, 137–150.

    Google Scholar 

  • — & Baird, I. E., 1961. Relation between primary production, chlorophyll, and particutlate carbon. Limnol. Oceanogr.6, 68–78.

    Google Scholar 

  • Steemann Nielsen, E., 1962. Inactivation of photochemical mechanism in photosynthesis. Physiologia Pl.15, 161–171.

    Google Scholar 

  • —, 1965. On the determination of the activity in14Carbon-ampoules for measuring primary production. Limnol. Oceanogr.10, 247–252.

    Google Scholar 

  • — & Willemöes, M., 1971. How to measure the illumination rate when investigating the rate of photosynthesis of unicellular alga under various light conditions. Int. Revue ges. Hydrobiol.56, 541–556.

    Google Scholar 

  • Stevenson, M. M., Schnell, G. D. & Black, R., 1974. Factor analysis of fish distribution patterns in western and central Oklahoma. Syst. Zool.23, 202–218.

    Google Scholar 

  • Strickland, J. D. H., 1960. Measuring the production of marine phytoplankton. Bull. Fish. Res. Bd Can.122, 1–172.

    Google Scholar 

  • —, 1965. Production of organic matter in the primary stages of the marine food chain. Chemical oceanography. Ed. by J. P. Riley & G. Skirrow. Acad. Press, London,1, 477–610.

    Google Scholar 

  • Taguchi, S., 1972. Mathematical analysis of primary production in the Bering Sea. In: Biological oceanography of the northern North Pacific Ocean. Ed. by A. Y. Takenouti. Idemitsu Shoten, Tokyo, 253–262.

    Google Scholar 

  • Talling, J. F., 1960. Comparative laboratory and field studies of photosynthesis by a marine planktonic diatom. Limnol. Oceanogr.5, 62–77.

    Google Scholar 

  • Unesco (Editor). Determination of photosynthetic pigments, 1966. Unesco, Paris, 69 pp. (Monographs on oceanographic methodology. 1.)

    Google Scholar 

  • Vinogradov, M. E., Menshutkin, V. V. & Shushkina, E. A., 1972. On mathematical simulation of a pelagic ecosystem. Mar. Biol.16, 261–268.

    Google Scholar 

  • Vollenweider, R. A., 1965. Calculation models of photosynthesis-depth curves and some implications regarding day rate estimates in primary production measurements. Memorie Ist. ital. Idrobiol.18 (Suppl.), 425–457.

    Google Scholar 

  • Wallen, D. G. and Geen, G. H., 1971. The nature of the photosynthate in natural phytoplankton populations in relation to light intensity. Mar. Biol.10, 157–168.

    Google Scholar 

  • Walsh, J. J. & Dugdale, R. C., 1972. Nutrient submodels and simulation models of phytoplankton production in the sea. In: Nutrients in natural waters. Ed. by H. E. Allen & J. R. Kramer. Wiley, New York, 171–191.

    Google Scholar 

  • Wikum, D. A. & Wali, M. K., 1974. Analysis of a North Dakota gallery forest: vegetation in relation to topographic and soil gradients. Ecol. Monogr.44, 441–464.

    Google Scholar 

  • Winter, D. F., Banse, K. & Anderson, G. C., 1975. The dynamics of phytoplankton blooms in Puget Sound, a fiord of the northwestern United States. Mar. Biol.29, 139–176.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hameedi, M.J. Changes in specific photosynthetic rate of oceanic phytoplankton from the northeast Pacific Ocean. Helgolander Wiss. Meeresunters 30, 62–75 (1977). https://doi.org/10.1007/BF02207825

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02207825

Keywords