Skip to main content
  • Tidal Ecosystems
  • Published:

A preliminary carbon budget for a part of the Ems estuary: The Dollard

Abstract

During 1975, measurements were made to quantify all sources of input of organic matter in the Dollard. This made a comparison possible between in situ primary production, import from natural sources and organic waste discharges in terms of organic carbon. In order to make a carbon budget, mineralization and the amount of organic matter buried in the sediment was also measured. Input of organic carbon was mainly based on primary production on the tidal flats (measured in situ as O2 production, 9.3×106 kg C · year−1), accumulation of suspended matter originating from the North Sea and the River Ems (maximal 37.1×106 kg C · year−1) and discharge of heavily polluted water (33.0×106 kg C · year−1). Input from primary production in the water phase was negligibly low (0.7×106 kg C · year−1). Loss of organic carbon was due to mineralization in the sediment (measured in situ as oxygen consumption, 18.2×106 kg C · year−1), mineralization in the water phase (using the BOD technique, 7.2×106 kg C · year−1) and burying of organic matter in the sediment (9.9·106 kg C · year−1). The loss of dissolved organic matter to the adjacent Waddensea was not measured but must be considerable. Allochthonous detritus was the main source of energy for the food-webs in the Dollard. The role of bacteria as an important source of food for higher organisms in the Dollard is discussed.

Literature cited

  • Cadee, G. C. & Hegeman, J., 1974. Primary production of the benthic microflora living on tidal flats in the Dutch Wadden Sea. Neth. J. Sea Res.8, 260–291.

    Google Scholar 

  • Caspers, H., 1968. Der Einfluß der Elbe auf die Verunreinigung der Nordsee. Helgoländer wiss. Meeresunters.17, 422–434.

    Google Scholar 

  • Dorrestein, R., 1960. On the distribution of salinity and of some other properties of the water in the Ems-estuary. Verh. K. ned. geol. — mijnb. Genoot. (Geol.)19, 279–292.

    Google Scholar 

  • Fenchel, T., 1972. Aspects of decomposer food chains in marine benthos. Verh. dt. zool. Ges.65, 14–22.

    Google Scholar 

  • Groot, S. J. de & Postma, H., 1968. The oxygen content of the Wadden Sea. Neth. J. Sea Res.4, 1–10.

    Google Scholar 

  • Hargrave, B. T., 1970. The effect of a deposit-feeding amphipod on the metabolism of benthic microflora. Limnol. Oceanogr.15, 21–30.

    Google Scholar 

  • Heinle, D. R. & Flemer, D. A., 1976. Flows of materials between poorly flooded tidal marshes and an estuary. Mar. Biol.35, 359–373.

    Google Scholar 

  • Hollibaugh, J. T., 1976. The biological degradation of arginine and glutamic acid in sea water in relation to the growth of phytoplankton. Mar. Biol.36, 303–312.

    Google Scholar 

  • Jonge, V. N. de & Postma, H., 1974. Phosphorus compounds in the Dutch Wadden Sea. Neth. J. Sea Res.8, 139–153.

    Google Scholar 

  • Keefe, C. W., 1972. Marsh production: A summary of the literature. Mar. Sci.16, 163–181.

    Google Scholar 

  • Kühl, H. & Mann, H., 1954. Über die Hydrochemie der unteren Ems. Veröff. Inst. Meeresforsch. Bremerh.3, 126–158.

    Google Scholar 

  • ——, 1973. Untersuchungen zur Hydrobiologie der unteren Ems. Arch. Fisch Wiss.23, 243–268.

    Google Scholar 

  • Manuels, M. W. & Postma, H., 1974. Measurements of ATP and organic carbon in suspended matter of the Dutch Wadden Sea. Neth. J. Sea Res.8, 292–311.

    Google Scholar 

  • Mebius, L. J., Dekker, A. & ten Have, J., 1957. The “Kurmies” method, a rapid and reliable titrimetric method for the determination of the total organic matter content of the soil. Chem. Weekbl.53, 291–294.

    Google Scholar 

  • Ministerie van Verkeer en Waterstaat, 1974. Getijdetafels voor Nederland. Staatsuitgeverij, Den Haag,1975.

  • Newell, R., 1965. The role of detritus in the nutrition of two marine deposit feeders, the prosobranch Hydrobia ulvae and the bivalve Macoma balthica. Proc. zool. Soc. Lond.144, 24–45.

    Google Scholar 

  • Nixon, S. W. & Oviatt, C. A., 1973. Ecology of a New England salt marsh. Ecol. Monogr.43, 463–498.

    Google Scholar 

  • Pomeroy, L. R., 1959. Algal productivity in salt marshes of Georgia. Limnol. Oceanogr.4, 386–397.

    Google Scholar 

  • Postma, H., 1954. Hydrography of the Dutch Wadden Sea. Archnéerl. Zool.10, 405–511.

    Google Scholar 

  • —, 1961. Transport and accumulation of suspended matter in the Dutch Wadden Sea. Neth. J. Sea Res.1, 148–190.

    Google Scholar 

  • Reenders, R. & Meulen, D. H. van der, 1972. De ontwikkeling van de Dollard over de periode 1952–1969/1970. Studiedienst Rijkswaterstaat, Delfzijl, Nota72-1 (in Dutch).

  • Straaten, L. M. J. U. van, 1960. Transport and composition of sediments. Verh. K. ned. geol.-mijnb. Genoot. (Geol.)19, 279–292.

    Google Scholar 

  • Teal, J. M., 1962. Energy flow in the salt marsh ecosystem of Georgia. Ecology43, 614–624.

    Google Scholar 

  • Vollenweider, R. A. (Ed.), 1969. A manual on methods for measuring primary production in the aquatic environment. Blackwell, Oxford, 225 pp.

    Google Scholar 

  • Wright, R. T. & Hobbie, J. E., 1966. Use of glucose and acetate by bacteria and algae in aquatic ecosystems. Ecology47, 447–464.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Es, F.B. A preliminary carbon budget for a part of the Ems estuary: The Dollard. Helgolander Wiss. Meeresunters 30, 283–294 (1977). https://doi.org/10.1007/BF02207842

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02207842

Keywords