Skip to main content
  • Benthic Ecosystems
  • Published:

The stability of benthic ecosystems

Abstract

Physicists have two conceptions of the stability of systems: global and neighbourhood stability. Global stability corresponds to the idea of successional changes leading to climax communities. Yet, neighbourhood stability is shown to be a more realistic model for changes in dominance of marine benthic sediment-living communities. The factors inducing state changes in dominance pattern were shown to be principally biological interactions. In order to model the stability of benthic ecosystems, much more attention must be given to natural history-type studies of biological interactions. Furthermore, mathematical models usually assume that the systems are globally stable. Should neighbourhood stability prove to be the rule for benthic systems then realistic models of such systems will be an order of magnitude more complex.

Literature Cited

  • Buchanan, J. B., 1974. A study of long term stability in a benthic crustacean. Proc. Challenger Soc.4, 252–253.

    Google Scholar 

  • Clements, F. E., 1916. Plant succession. An analysis of the development of vegetation. Publs Carnegie Instn242, 512 pp.

    Google Scholar 

  • Forcier, L. K., 1975. Reproductive strategies and the co-occurrence of climax tree species. Science, N.Y.189, 808–810.

    Google Scholar 

  • Gleason, H. A., 1926. The individualistic concept of the plant association. Bull. Torrey bot. Club53, 7–26.

    Google Scholar 

  • Gray, J. S., 1976. The fauna of the polluted river Tees estuary. Estuar. coast. mar. Sci. (In press).

  • Holling, C. S., 1973. Resilience and stability of ecological systems. A. Rev. Ecol. Syst.4, 1–23.

    Google Scholar 

  • Jones, N. S., 1950. Marine bottom communities. Biol. Rev.25, 283–313.

    Google Scholar 

  • Krebs, C. J., 1972. Ecology. Harper & Row, New York, 694 pp.

    Google Scholar 

  • Lewontin, R. C., 1969. The meaning of stability. Brookhaven Symp. Biol.22, 13–24.

    PubMed  Google Scholar 

  • May, R. M., 1973. Stability and complexity in model ecosystems. Princeton Univ. Press, New Jersey, 235 pp.

    Google Scholar 

  • Mills, E. L., 1969. The community concept in marine zoology, with comments on continua and instability in some marine communities: a review. J. Fish. Res. Bd Can.26, 1415–1428.

    Google Scholar 

  • —, 1975. Benthic organisms and the structure of marine ecosystems. J. Fish. Res. Bd Can.32, 1657–1663.

    Google Scholar 

  • Newell, R. C., 1965. The role of detritus in the nutrition of two deposit feeders the prosobranchHydrobia ulvae and the bivalveMacoma balthica. Proc. zool. Soc. Lond.144, 25–45.

    Google Scholar 

  • Patten, B. C., 1975. Ecosystem linearization. An evolutionary design problem. In: Ecosystem analysis and prediction. Ed. by S. A. Levin. Soc. ind. appl. math., Philadelphia. 168–201.

    Google Scholar 

  • Pearson, T. H., 1970. The benthic ecology of Loch Linnhe and Loch Eil, a sea-loch system on the west coast of Scotland. I. The physical environment and the distribution of the macrobenthic fauna. J. exp. mar. Biol. Ecol.5, 1–34.

    Google Scholar 

  • —, 1971. The benthic ecology of Loch Linnhe and Loch Eil, a sea-loch system on the west coast of Scotland. III. The effect on the benthic fauna of the introduction of pulp mill effluent. J. exp. mar. Biol. Ecol.6, 211–233.

    Google Scholar 

  • —, 1975. The benthic ecology of Loch Linnhe and Loch Eil, a sea-loch system on the west coast of Scotland. IV. Changes in the benthic fauna attributable to organic enrichment. J. exp. mar. Biol. Ecol.20, 1–41.

    Google Scholar 

  • Petersen, C. G. J., 1915. On the animal communities of the sea bottom in the Skagerak, the Chiristiana Fjord and the Danish waters. Rep. Dan. Biol. Stn.23, 3–28.

    Google Scholar 

  • Rhoads, D. C. & Young, D. K., 1970. The influence of deposit-feeding benthos on bottom sediment stability and community trophic structure. J. mar. Res.28, 150–178.

    Google Scholar 

  • ——, 1971. Animal-sediment relations in Cape Cod Bay, Massachusetts. II. Reworking byMolpadia oolitica (Holothuroidea). Mar. Biol.11, 255–261.

    Google Scholar 

  • Sanders, H. L., 1958. Benthic studies in Buzzard's Bay. I. Animal-sediment relationships. Limnol. Oceanogr.3, 245–258.

    Google Scholar 

  • —, 1960. Benthic studies in Buzzard's Bay. III. Structure of the soft-bottom community. Limnol. Oceanogr.4, 138–153.

    Google Scholar 

  • Segerstrle, S. G., 1973. Results of bottom sampling in certain localities in the Tvärminne area (inner Baltic), with special reference to theMacoma-Pontoporeia theory. Commentat. Biol.67, 3–12.

    Google Scholar 

  • Sutherland, J. P., 1974. Multiple stable points in natural communities. Am. Nat.108, 859–873.

    Google Scholar 

  • Tansley, A. G., 1920. The classification of vegetation and the concept of development. J. Ecol.8, 118–149.

    Google Scholar 

  • Thorson, G., 1957. Bottom communities (sublittoral or shallow shelf). In: Treatise on marine ecology and paleoecology. Ed. by J. W. Hedgpeth. Geol. Soc. Am., New York,1, 461–534. (Mem. geol. Soc. Am.67)

    Google Scholar 

  • Woodin, S. A., 1974. Polychaete abundance patterns in a marine soft-sediment environment. The importance of biological interactions. Ecol. Monogr.44, 171–187.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gray, J.S. The stability of benthic ecosystems. Helgolander Wiss. Meeresunters 30, 427–444 (1977). https://doi.org/10.1007/BF02207852

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02207852

Keywords