Skip to main content
  • Benthic Ecosystems
  • Published:

Factors controlling marine and estuarine sublittoral macrofauna

Abstract

The state of knowledge of marine and estuarine sublittoral benthic synecology may be said to be still in a descriptive stage of study. Much of the recent literature of the subject concerns either qualitative and quantitative descriptions of communities or associations, or concepts of such associations including diversity, stability and succession. It is the purpose of this paper to present a theory, based on a hierarchy of multiple limiting physical and biotic factors, for study of the controls governing community composition, biomass and productivity. Three major biotic factors are considered as qualitative and quantitative controls: food supply, supply of colonizing larvae, and interspecies competition. They are discussed and new techniques are suggested which may help in understanding the mechanisms of control.

Literature Cited

  • Aller, R. C. & Dodge, R. E., 1974. Animal-sediment relations in a tropical lagoon Discovery Bay, Jamaica. J. mar. Res.32, 209–232.

    Google Scholar 

  • Banin, A., Gal, M., Zohar, Y. & Singer, A., 1975. The specific surface area of clays in lake sediments — measurement and analysis of contribution in Lake Kinnert, Israel. Limnol. Oceanogr.20, 278–282.

    Google Scholar 

  • Banse, K., 1974. On the role of bacterioplankton in the tropical ocean. Mar. Biol.24, 1–5.

    Google Scholar 

  • Boesch, D. F., 1972. Species diversity of marine macrobenthos in the Virginia area. Chesapeake Sci.13, 206–211.

    Google Scholar 

  • Bousfield, E. L., 1955 Ecological control of the occurrence of barnacles in the Miramichi estuary. Bull. natn. Mus. Can.137, 1–69.

    Google Scholar 

  • Brunauer, S., Emmett, D. H. & Teller, E., 1938. The adsorption of gases in multimolecular layers. J. Am. chem. Soc.60, 309–316.

    Google Scholar 

  • Burke, M. V. & Mann, K. H., 1974. Productivity and production: biomass ratios of bivalve and gastropod populations in an eastern Canadian estuary. J. Fish. Res. Bd Can.31, 167–177.

    Google Scholar 

  • Campbell, J. I. & Meadows, P. S., 1974. Gregarious behaviour in a benthic marine amphipod (Corophium volutator). Experentia30, 1396–1397.

    Google Scholar 

  • Carney, J. F. & Colwell, R. R., 1976. Heterotrophic utilization of glucose and glutamate in an estuary: effect of season and nutrient load. Appl. environm. Microbiology31, 227–261.

    Google Scholar 

  • Chambers, M. R. & Milne, H., 1975. The production ofMacoma balthica (L.) in the Ythan Estuary. Estuar. coast. mar. Sci.3, 443–455.

    Google Scholar 

  • Christie, N. D., 1975. Relationship between sediment texture, species richness and volume of sediment sampled by a grab. Mar. Biol.30, 89–96.

    Google Scholar 

  • Crippen, R. W. & Reish, D. J., 1969. An ecological study of the polychaetous annelids associated with fouling material in Los Angeles Harbour with special reference to pollution. Bull. S. Calif. Acad. Sci.68, 169–186.

    Google Scholar 

  • Dayton, P. K. & Hessler, R. R., 1972. Role of biological disturbance in maintaining diversity in the deep sea. Deep-Sea Res.19,199–208.

    Google Scholar 

  • Fager, E. W., 1964. Marine sediments: effects of a tubebuilding polychaete. Science, N. Y.143, 356–359.

    Google Scholar 

  • Fenchel, T., 1969. The ecology of marine microbenthos. IV. The structure and functions of the benthic ecosystem, its chemical and physical factors and the microfauna communities with special reference to the ciliated Protozoa. Ophelia6, 1–182.

    Google Scholar 

  • — 1970. Studies on the decomposition of organic detritus derived from the turtle grassThalassia testudinum. Limnol. Oceanogr.15, 14–20.

    Google Scholar 

  • — 1975. Factors determining the distribution patterns of mud snails (Hydrobiidae). Oecologia20, 1–18.

    Google Scholar 

  • Galtsoff, A. M., 1964. The American oysterCrassostrea virginica Gmelin. Fish. Bull. U.S.64, 480 pp.

    Google Scholar 

  • Goodman, D., 1974. The validity of the diversity-stability hypothesis. Proc. int. Congr. Ecol.75, 79.

    Google Scholar 

  • Gray, J. S., 1974. Animal-sediment relationships. Oceanogr. mar. Biol.12, 223–261.

    Google Scholar 

  • Hendricks, A., Henley, D., Wyatt, J. T., Dickson, K. L. & Silvey, J. K. G., 1974. Utilization of diversity indices in evaluationg the effect of a paper mill effluent on bottom fauna. Hydrobiologia44, 463–474.

    Google Scholar 

  • Herbland, A. & Pages, J., 1976. Note on the variability of heterotrophic activity measurements by the14C method in sea water. Mar. Biol.35, 211–214.

    Google Scholar 

  • Hildreth, D. I. & Crisp, D. J., 1976. A corrected formula for calculation of filtration rate of bivalve molluscs in an experimental flowing system. J. mar. biol. Ass. U. K.56, 111–120.

    Google Scholar 

  • Hjulström, F., 1939. Transportation of detritus by moving water. In: Recent marine sediments. Ed. by P. D. Trask. Am. Ass. Petrol. Geol. Tulsa, Oklahoma, 5–31.

    Google Scholar 

  • Hodson, R. E., Holm-Hansen, O. & Azam, F., 1976. Improved methodology for ATP determination in marine environments. Mar. Biol.34, 143–149.

    Google Scholar 

  • Holland, J. S., Maciolek, N. J. & Oppenheimer, C. H., 1973. Galveston Bay benthic community structure as an indicator of water quality. Contrib. mar. Sci.17, 169–188.

    Google Scholar 

  • Holm-Hansen, O. & Booth, C. R., 1966. The measurement of adenosine triphosphate in the ocean and its ecological significance. Limnol. Oceanogr.11, 510–519.

    Google Scholar 

  • Hurlbert, S. H., 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecology52, 577–586.

    Google Scholar 

  • Hylleberg, J., 1975. Selective feeding byAbarenicola pacifica with notes onAbarenicola vagabunda and a concept of gardening in lugworms. Ophelia14, 113–137.

    Google Scholar 

  • Jacobs, J., 1974. Diversity, stability and maturity in ecosystems influenced by human activities. J. Proc. int. Congr. Ecol.1, 94–95.

    Google Scholar 

  • Jørgensen, C. B., 1966. Biology of suspension feeding. Pergamon Press, Oxford, 357 pp.

    Google Scholar 

  • Joyce, J. R., 1973. An improved bottom-water sampler. J. mar. biol. Ass. U.K.53, 741–744.

    Google Scholar 

  • Kinner, P., Maurer, D. & Leathem, W., 1974. Benthic invertebrates in Delaware Bay: Animalsediment associations of the dominant species. Int. Revue ges. Hydrobiol.59, 685–701.

    Google Scholar 

  • Kirby-Smith, W. W., 1972. Growth of the bay scallop: influence of experimental water currents. J. exp. mar. Biol. Ecol.8, 7–18.

    Google Scholar 

  • Klein, G., Rachor, E. & Gerlach, S. A., 1975. Dynamics and productivity of two populations of the benthic tube-dwelling amphipodAmpelisca brevicornis (Costa) in Helgoland Bight. Ophelia14, 139–160.

    Google Scholar 

  • Krumbein, W. E., 1970.On the behaviour of pure cultures of marine microorganisms in sterilized and re-inoculated sediments. Helgoländer wiss. Meeresunters.20, 17–28.

    Google Scholar 

  • — 1971a. Sedimentmikrobiologische Untersuchungen I. — Über die Abhängigkeit der Keimzahl von der Korngröße. Vie Milieu (Suppl.)22, 253–264.

    Google Scholar 

  • — 1971b. Sediment microbiology and grain-size distribution, as related to tidal movement, during the first mission of the West German underwater laboratory “Helgoland”. Mar. Biol.10, 101–112.

    Google Scholar 

  • Leigh, E. G., 1965. On the relation between the productivity, biomass, diversity and stability of a community. Proc. natn Acad. Sci. U.S.A.53, 777–783.

    Google Scholar 

  • Levinton, J., 1972. Stability and trophic structure in deposit-feeding and suspension feeding communities. Am. Nat.106, 472–486.

    Google Scholar 

  • Livingston, R. J., 1976. Diurnal and seasonal fluctuations of organisms in a north Floridaestuary. Estuar. coast. mar. Sci.4, 373–400.

    Google Scholar 

  • Longbottom, M., 1970. The distribution ofArenicola marina (L.) with particular reference to the effects of particle size and organic matter of the sediments. J. exp. mar. Biol. Ecol.5, 138–157.

    Google Scholar 

  • McNulty, J. K., Work, R. C. & More, H. B., 1962. Some relationships between the infauna of the level-bottom and the sediment in South Florida. Bull. mar. Sci. Gulf Caribb.12, 322–332.

    Google Scholar 

  • Meadows, P. S., 1965. Attachment of marine and freshwater bacteria to solid surfaces. Nature, Lond.207, 1108.

    Google Scholar 

  • Mills, E. L., 1969. The community concept in marine zoology, with comments on continua and instability in some marine communities: a review. J. Fish. Res. Bd Can.26, 1415–1428.

    Google Scholar 

  • Moore, H. B., 1931. The muds of the Clyde sea area. III. Chemical and physical considerations: rate of sedimentation and fauna. J. mar. biol.Ass. U.K.17, 325–328.

    Google Scholar 

  • Moore, P. G., 1975. The role of habitat selection in determining the local distribution of animals in the sea. Mar. Behav. Physiol.3, 97–100.

    Google Scholar 

  • Marin, R. E. & Jacobs, H. S., 1964. Surface area determination of soils by adsorption of ethylene glycol vapor. Proc. Soil Sci. Soc. Am.28, 190–194.

    Google Scholar 

  • Newell, R. C., 1964. Some factors controlling the upstream distribution ofHydrobia ulvae. Proc. zool. Soc., Lond.142, 85–106.

    Google Scholar 

  • —, 1965. The role of detritus in the nutrition of two marine deposit feeders, the prosobranchHydrobia ulvae and the bivalveMacoma balthica. Proc. zool. Soc., Lond.144, 25–45.

    Google Scholar 

  • — 1970. Biology of intertidal animals. Elsevier, New York, 555 pp.

    Google Scholar 

  • Pamatmat, M. M. & Banse, K., 1969. Oxygen consumption by the sea bed. Limnol. Oceanogr.14, 250–259.

    Google Scholar 

  • Pearson, T. H., 1971. Studies on the ecology of the macrobenthic fauna of Lochs Linnhe and Eil, west coast of Scotland. II. Analysis of the macrobenthic fauna by comparison of feeding groups. Vie Milieu (Suppl.)22, 53–91.

    Google Scholar 

  • —, 1972. The effect of industrial effluent from pulp and paper mills on the marine benthic environment. Proc. R. Soc. (B)180, 469–485.

    Google Scholar 

  • Peer, D. L., 1970. Relation between biomass, productivity, and loss to predators in a population of a marine benthic polychaete,Pectinatia hyperborea. J. Fish. Res. Bd Can.27, 2143–2153.

    Google Scholar 

  • Peters, R. H., 1976. Tautology in evolution and ecology. Am. Nat.110, 1–12.

    Google Scholar 

  • Pianka, E. R., 1966. Latitudinal gradients in species diversity: a review of concepts. Am. Nat.100, 33–46.

    Google Scholar 

  • Reish, D. J., 1973. The use of benthic animals in monitoring the marine environment. J. environm. Planning Pollut. Control (G.B.)1, 32–38.

    Google Scholar 

  • Reiswig, H. M., 1975. Bacteria as food for temperate-water marine sponges. Can. J. Zool.53, 582–589.

    Google Scholar 

  • Rhoads, D. C., 1974. Organism-sediment relations on the muddy sea floor. Oceanogr. mar. Biol.12, 263–300.

    Google Scholar 

  • — & Young, D. K., 1970. The influence of deposit feeding organisms on sediment stability and community trophic structure. J. mar. Res.28, 150–178.

    Google Scholar 

  • Rosenberg, R., 1972. Benthic faunal recovery in a Swedish fjord following the closure of a sulphite pulp mill. Oikos23, 92–108.

    Google Scholar 

  • — 1973. Succession in benthic macrofauna in a Swedish fjord subsequent to the closure of a sulphite pulp mill. Oikos24, 244–258.

    Google Scholar 

  • Sanders, H. L., 1956. Oceanography of Long Island Sound 1952–1954. X. The biology of marine bottom communities. Bull. Bingham. oceanogr. Coll.15, 345–414.

    Google Scholar 

  • —, 1968. Marine benthic diversity: a comparative study. Am. Nat.102, 243–282.

    Google Scholar 

  • Schwarz, J. R., Yayanos, A. A. & Colwell, R. R., 1976. Metabolic activities of the intestinal microflora of a deep-sea invertebrate. Appl. environm. Microbiology31, 46–52.

    Google Scholar 

  • Segerstrale, S. G., 1973. Results of bottom fauna sampling in certain localities in the Tvarminne area (inner Baltic), with special reference to the so-calledMacoma-Pontoporeia theory. Commentat. biol.67, 1–12.

    Google Scholar 

  • Shugart, H. H., 1973. Succession: Similarities of species turnover rates. Science, N.Y.180, 1379–1381.

    Google Scholar 

  • Slabaugh, W. H. & Stump, A. D., 1964, Surface areas and porosity of sediments. J. geophys. Res.69, 4773–4778.

    Google Scholar 

  • Smith, K. L., 1971. A device for sampling immediately above the sediment-water interface. Limnol. Oceanogr.16, 675–677.

    Google Scholar 

  • Ward, A. R., 1975. Studies on the sublittoral free-living nematodes of Liverpool Bay. II. Influence of sediment composition on the distribution of marine nematodes. Mar. Biol.30, 217–226.

    Google Scholar 

  • Wildish, D. J., 1970. Some factors affecting the distribution ofOrchestia Leach in estuaries. J. exp. mar. Biol. Ecol.5, 276–284.

    Google Scholar 

  • Wildish, D. J., 1976. Determination of adenosine 5′-triphosphate in estuarine water and sediments by firefly bioluminescence assay. Tech. Rep. Fish. mar. Serv. Res. Dev.649, 45 pp.

    Google Scholar 

  • Wolff, W. J., 1974. Benthic diversity in the Rhine-Meuse estuary. Hydrobiol. Bull.8, 242–252.

    Google Scholar 

  • Woodin, S. A., 1974. Polychaete abundance patterns in a marine soft-sediment environment: The importance of biological interactions. Ecol. Monogr.44, 171–187.

    Google Scholar 

  • Zobell, C. E., 1946. Marine microbiology. Chronica Botanica Co., Waltham, Mass. 240 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wildish, D.J. Factors controlling marine and estuarine sublittoral macrofauna. Helgolander Wiss. Meeresunters 30, 445–454 (1977). https://doi.org/10.1007/BF02207853

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02207853

Keywords