Skip to main content
  • Published:

Continuous underwater light measurement near Helgoland (North Sea) and its significance for characteristic light limits in the sublittoral region

Abstract

Underwater irradiance was measured at intervals of 20 min for one year at 2 water depths (2.5 and 3.5 m below M.L.W.S.) and in 3 spectral regions in the sublittoral region of the rocky island of Helgoland. Data are presented for spectral and total irradiance at water depths ranging from 2 to 15 m (below M.L.W.S.). 90% of the total annual light reaching sublittoral habitats is received during the period from April to September, when Jerlov water type 7 (occasionally water type 5) dominates. During the other half of the year, the water is very turbid, and transparency is so low that long dark periods occur even at moderate water depths. The total annual light received at the lower kelp limit (Laminaria hyperborea), at 8 m water depth, is 15 MJ m−2 year−1 or 70 E m−2 year−1, which corresponds to 0.7% of surface irradiance (visible). At the lower algal limit (15 m water depth) these values are 1 MJ m−2 year−1 or 6 E m−2 year−1, corresponding to 0.05% of surface irradiance. These data are similar to measurements at the same limits in several different geographical areas, and may determine the depth at which these limits occur.

Literature Cited

  • Anderson, M. C., 1971. Radiation and crop structure. In: Plant photosynthetic production. Ed. by Z. Sestak, J. Catsky & P. G. Jarvis. Junk, The Hague, 412–466.

    Google Scholar 

  • Boutler, J., Cabioch, L. & Grall, J.-R., 1974. Quelques observations sur la pénétration de la lumière dans les eaux marines au voisinage de Roscoff et ses conséquences écologiques. Bull. Soc. phycol. Fr.19, 129–140.

    Google Scholar 

  • Burr, A. H. & Duncan, M. J., 1972. Portable spectroradiometer for underwater environments. Limnol. Oceanogr.17, 466–474.

    Google Scholar 

  • Castric-Fey, A., Girard-Descatoire, A., Lafargue, F., & L'Hardy-Halos, M.-T., 1973. Etagement des algues et des invertébrés sessiles dans l'Archipel de Glénan. Helgoländer wiss. Meeresunters.24, 490–509.

    Article  Google Scholar 

  • Descatoire, A., Fey, A. & Lafargue, F., 1969. Les peuplements sessiles de l'Archipel de Glénan. Introduction. Vie Milieu20, 171–176.

    Google Scholar 

  • Drew, E. A., 1969. Photosynthesis and growth of attached marine algae down to 130 metres in the Mediterranean. Int. Seaweed Symp.6, 151–159.

    Google Scholar 

  • — 1974a. An ecological study ofLaminaria ochroleuca Pyl. growing in the straits of Messina. J. exp. Biol. Ecol.15, 11–24.

    Article  Google Scholar 

  • — 1974b. Light inhibition of photosynthesis in macro-algae. Br. phycol. J.9, 217–218.

    Google Scholar 

  • Feldmann, J., 1937. Les algue de la côte des Albères. I–III. Cyanophycées, Chlorophycées, Phéophycées. Revue algol.9, 1–197.

    Google Scholar 

  • Fredj, G., 1972. Compte rendu de plongée en SP 300 sur les fonds àLaminaria rodriguezii Bornet de la Pointe de Revellata (Corse). Bull. Inst. océanogr., Monaco71 (1421), 1–42.

    Google Scholar 

  • Gargas, E., 1975. A manual for phytoplankton primary production studies in the Baltic. Baltic mar. Biol. Publs2, 1–88.

    Google Scholar 

  • Gessner, F., 1955. Hydrobotanik. VEB Dt. Verl. d. Wiss., Berlin,1, 1–517.

    Google Scholar 

  • Giaccone, G., 1972. Struttura, ecologia e corologia dei popolamenti a Laminarie dello stretto di Messina e del mare di Alboran. Memorie Biol. mar. Oceanogr.2, 37–59.

    Google Scholar 

  • Gordon, H. R. & Dera, J., 1969. Irradiance attenuation on sea water off southeast Florida. Bull. mar. Sci.19, 279–285.

    Google Scholar 

  • Hartog, C. den, 1959. The epilithic algal communities occurring along the coast of the Netherlands. Wentia,1, 3–241.

    Google Scholar 

  • Hoek, C. van den, Breeman, A. M., Bak, R. P. M. & Buurt, G. van, 1978. The distribution of algae, corals and gorgonians in relation to depth, light attenuation, water movement and grazing pressure in the fringing coral reef of Curaçao, Netherlands Antilles. Aquat. Bot.5, 1–46.

    Article  Google Scholar 

  • Holmes, R. W. & Snodgrass, J. M., 1961. A multiple-detector irradiance meter and electronic depth-sensing unit for use in biological oceanography. J. mar. Res.19, 40–56.

    Google Scholar 

  • Incoll, L. D., Long, S. P. & Ashmore, M. R., 1977. SI units in publications in plant science. Curr. Adv. Plant Sci.28, 331–343.

    Google Scholar 

  • Ivanoff, A., 1957. Contribution à l'étude des propriétés optiques de l'eau de mer en Bretagne et en Corse, et la théorie de la polarisation sous-marine. Annls Géophys.13, 22–53.

    Google Scholar 

  • —, Jerlov, N. G. & Waterman, T. H., 1961. A comparative study of irradiance, beam transmittance and scattering in the sea near Bermuda. Limnol. Oceanogr.6, 129–148.

    Google Scholar 

  • Jerlov, N. G., 1954. Colour filters to simulate the extinction of daylight in the sea. J. Cons. perm. Explor. Mer20, 156–159.

    Google Scholar 

  • —, 1966. Aspects of light measurement in the sea. In: Light as an ecological factor. Ed. by R. Bainbridge, G. C. Evans & O. Rackham. Blackwell, Oxford, 91–98.

    Google Scholar 

  • —, 1968. Optical oceanography. Elsevier, Amsterdam, 194 pp.

    Google Scholar 

  • —, 1974. A simple method for measuring quanta irradiance in the ocean. Rep. Kjøb. Univ. Inst. Fys. Oceanogr.24, 1–7.

    Google Scholar 

  • —, 1976. Marine optics. Elsevier, Amsterdam, 231 pp.

    Google Scholar 

  • — & Nygård, K., 1969. A quanta and energy meter for photosynthetic studies. Rep. Kjøb. Univ. Inst. Fys. Oceanogr.10, 1–19.

    Google Scholar 

  • Joseph, J., 1949. Über die Messung des “Vertikalen Extinktionskoeffizienten”. Dt. hydr. Z.2, 255–267.

    Article  Google Scholar 

  • Jupp, B. P. & Drew, E. A., 1974. Studies on the growth ofLaminaria hyperborea (Gunn.) Fosl. I. Biomass and productivity. J. exp. mar. Biol. Ecol.15, 185–196.

    Article  Google Scholar 

  • Kain, J. M., 1971. Continuous recording of underwater light in relation toLaminaria distribution. In: Fourth European Marine Biology Symposium. Ed. by D. J. Crisp. Cambridge Univ. Press, London, 335–346.

    Google Scholar 

  • — 1976. The biology ofLaminaria hyperborea. VIII. Growth on cleared areas. J. mar. biol. Ass. U.K.56, 267–290.

    Google Scholar 

  • —, Drew, E. A. & Jupp, B. P., 1976. Light and the ecology ofLaminaria hyperborea II. In: Light as an ecological factor. Ed. by G. C. Evans, R. Bainbridge & O. Rackham. Blackwell, Oxford,2, 63–92.

    Google Scholar 

  • Kubin, S., 1971. Measurement of radiant energy. In: Plant photosynthetic production. Ed. by Z. Sestak, J. Catsky & P. G. Jarvis. Junk, The Hague, 702–765.

    Google Scholar 

  • Lang, J. C., 1974. Biological zonation at the base of a reef. Am. Scient.62, 271–281.

    Google Scholar 

  • Larkum, A. W. D., Drew, E. A. & Crossett, R. N., 1967. The vertical distribution of attached marine algae in Malta. J. Ecol.55, 361–371.

    Google Scholar 

  • Levring, T., 1969. Light conditions, photosynthesis and growth of marine algae in coastal and clear oceanic water. Int. Seaweed Symp.6, 235–244.

    Google Scholar 

  • Lüning, K. 1970. Tauchuntersuchungen zur Vertikalverteilung der sublitoralen Helgoländer Algenvegetation. Helgoländer wiss. Meeresunters.21, 271–291.

    Article  Google Scholar 

  • —, 1971. Seasonal growth ofLaminaria hyperborea under recorded underwater light conditions near Helgoland. In: Fourth European Marine Biology Symposium. Ed. by D. J. Crisp. Cambridge Univ. Press, Cambridge, 347–361.

    Google Scholar 

  • Lüning, K., 1980. Critical levels of light and temperature regulating the gametogenesis of threeLaminaria spp. (Phaeophyceae). J. Phycol. (In press).

  • Mojo, L. & Buta, G. 1970. Osservazione dei fondali dello stretto di Messina mediante TV subacquea. Accad. Peloritana, de Pericolanti50, 65–71.

    Google Scholar 

  • Molinier, R., 1960a. Etude des biocoenoses marines du Cap Corse. I. Vegetatio9, 121–192.

    Google Scholar 

  • — 1960b. Etude des biocoenoses marines du Cap Corse. II. Vegetatio9, 217–312.

    Google Scholar 

  • Morel, A. & Smith, R. C., 1974. Relation between total quanta and total energy for aquatic photosynthesis. Limnol. Oceanogr.19, 591–600.

    Google Scholar 

  • Neushul, M., 1967. Studies of subtidal marine vegetation in western Washington. Ecology48, 83–94.

    Google Scholar 

  • —, 1971. Submarine illumination inMacrocystis beds. Nova Hedwigia (Beih.)32, 241–254.

    Google Scholar 

  • Norton, T. A., Ebling, F. J. & Kitching, J. A., 1971. Light and the distribution of organisms in a sea cave. In: Fourth European marine biology symposium. Ed. by D. J. Crisp. Univ. Press, Cambridge, 409–432.

    Google Scholar 

  • Pérès, J. M., 1957. Essai des communautés benthiques marines du globe. Recl. Trav. Stn mar. Endoume13 (22), 23–54.

    Google Scholar 

  • —, 1967a. The mediterranean benthos. Oceanogr. mar. Biol.5, 449–533.

    Google Scholar 

  • —, 1967b. Les biocoenoses benthiques dans le système phytal. Recl. Trav. Stn mar. Endoume58 (42), 1–113.

    Google Scholar 

  • — & Molinier, R., 1957. Compte-rendu du colloque tenu à Gênes par le comité du benthos de la commission internationale pour l'exploration scientifique de la mer Méditerranée. Recl. Trav. Stn mar. Endoume13 (22), 5–15.

    Google Scholar 

  • —, & Picard, J., 1956. Considérations sur l'étagement des formations benthiques. Recl. Trav. Stn mar. Endoume11 (18), 11–16.

    Google Scholar 

  • ——, 1964. Nouveau manuel de bionomie benthique de la mer Méditerranée. Recl. Trav. Stn mar. Endoume31 (47), 1–137.

    Google Scholar 

  • Smith, R. C., 1969. An underwater spectral irradiance collector. J. mar. Res.27, 111–120.

    Google Scholar 

  • Steeman-Nielsen, E., 1974. Light and primary production. In: Optical aspects of oceanography. Ed. by N. G. Jerlov & E. Steeman-Nielsen. Acad. Press, London, 361–388.

    Google Scholar 

  • Stephenson, T. A. & Stephenson, A., 1949. The universal features of zonation between tide-marks on rocky coasts. J. Ecol.37, 289–305.

    Google Scholar 

  • Szeicz, G., 1974. Solar radiation for plant growth. J. appl. Ecol.11, 617–636.

    Google Scholar 

  • Tyler, J. E., 1973. Applied radiometry. Oceanogr. mar. Biol.11, 11–25.

    Google Scholar 

  • —, 1975a. Photosynthetic radiant energy. Recommendations. SCOR working group 15 (with UNESCO and IAPSO). SCOR Executive Meeting18, 30–43.

    Google Scholar 

  • —, 1975b. Announcement. Limnol. Oceanogr.20, 680.

    Google Scholar 

  • — & Smith, R. C., 1970. Measurements of spectral irradiance underwater. In: Ocean Sciences. Ed. by D. A. Wilson. Naval Undersea Center, San Diego,1, 1–103.

    Google Scholar 

  • Weinberg, S. & Cortel-Breeman, A., 1978. The estimation of the yearly cycle of submarine irradiance for ecological purposes. A methodological example based on data from Banyuls-sur-Mer. Bijdr. Dierk.48, 35–44.

    Google Scholar 

  • Westlake, D. F., 1965. Some problems in the measurement of radiation under water: a review. Photochem. Photobiol.4, 849–868.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lüning, K., Dring, M.J. Continuous underwater light measurement near Helgoland (North Sea) and its significance for characteristic light limits in the sublittoral region. Helgolander Wiss. Meeresunters 32, 403–424 (1979). https://doi.org/10.1007/BF02277985

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02277985

Keywords