Skip to main content
  • Published:

Nahrung und Freßverhalten bei Sedimentfressern dargestellt am Beispiel von Sipunculiden und Holothurien

Food and feeding behavior of sediment feeders as exemplified by sipunculids and holothurians.

Abstract

Using a Phillipson microbomb calorimeter, the energy values of the “infauna-substrate-feeders”Sipunculus nudus andPhascolosoma vulgare and the nutritive value of their food substrate were determined. Calorific measurements were made of the total food substrate, of meiofauna organisms living in it and of fecal pellets from other invertebrate animals which are an important part in the food supply. Analyses of the gut content of the sipunculids and their feces were compared with the surrounding sediment. The total sediment had an ash content of about 97%, and an energy content of approximately 0.14 cal mg−1 dry weight; this is equivalent to 165 kcal m−2. For the meiofauna in this substrate a biomass of 800 mg dry weight was calculated. Using calorific determinations of important meiofauna groups (nematodes 5274 kcal kg−1, ostracods 5884 and 6000 kcal kg−1), one square meter of the sediment surface — the sipunculid food source — yielded a caloric content of 3.78 kcal for the meiofauna, which means a contribution of 2.3% to the total food substrate. The largest part of the calorific contents is by far provided by fecal pellets with 0.6 cal mg−1 dry weight or 150 kcal m−2; this accounts for 92% of the total calorific content of the food substrate. Peritrophic membranes and attached microorganisms may be responsible for this spectacularly high value. Coprophagy plays an important role. The rest of the total value was contributed by particulate and dissolved detritus as well as protozoans with a calculated sum of 10 kcal m−2 or 6%. Food uptake is selective with regard to small sediment grain sizes. The amount of meiofauna in the gut is 80 times lower than in the surrounding environment, the energy content in the anterior gut 10 times higher. The energy loss inS. nudus from the anterior gut to the middle gut is more than 70%, to the posterior gut a further loss of 19% was observed. Calorific measurements in the feces were no longer possible. The utilization of food appears to be almost 100%. A correlation between ash content and the quantity of the sand grain-size fraction 37–125 μm and the calorific content is shown. The meiofauna does not represent a significant part of the total food structure, but it is taken up and utilized as food by the sediment feeding macrofauna.

Zitierte literatur

  • Arakawa, K. Y., 1970. Scatological studies of the Bivalvia (Mollusca). Adv. mar. Biol.8, 307–436.

    Google Scholar 

  • Boje, R., 1965. Die Bedeutung von Nahrungsfaktoren für das Wachstum vonMytilus edulis L. in der Kieler Förde und im Nord-Ostsee-Kanal. Kieler Meeresforsch.21, 81–100.

    Google Scholar 

  • Boysen Jensen, P., 1919. Valuation of the Limfjord 1. Rep. Dan. biol. Stn26, 1–24.

    Google Scholar 

  • Brawn, V. M., Peer, D. L. & Bentley, R. J., 1968. Catoric content of the standing crop of benthic and epibenthic invertebrates of St. Margarets Bay, Nova Scotia. J. Fish. Res. Bd Can.25, 1803–1811.

    Google Scholar 

  • Bröckel, K. von, 1973. Eine Methode zur Bestimmung des Kaloriengehaltes von Seston. Kieler Meeresforsch.24, 34–49.

    Google Scholar 

  • Coull, B. C., 1969. Shallow water meiobenthos of the Bermuda Platform. Oecologia4, 325–357.

    Google Scholar 

  • Crisp, R. J., 1971. Energy flow measurements. In: Methods of the study of marine benthos. Ed. by N. A. Holme & A. D. McIntyre. Blackwell, Oxford, 197–280 (IPB Handbook Nr. 16).

    Google Scholar 

  • Cummins, K. W. & Wuycheck, J. C., 1971. Caloric equivalents for investigations in ecological energetics. Mitt. int. Verein. theor. angew. Limmol.18, 1–8.

    Google Scholar 

  • Elmgren, R., 1973. Recommendations for quantitative meiofauna work in the Baltic. In: Circular, Meiofauna Working Group, Baltic Marine Biologists,11, 1–4.

  • — & Ganning, B., 1974. Ecological studies of two shallow brackish water ecosystems. Contrib. Askö Lab.6, 1–56.

    Google Scholar 

  • Fenchel, T., 1969. The ecology of marine meiobenthos — IV. Structure and function of the benthic ecosystem, its chemical and physical factors and the microfauna communities with special reference to ciliated protozoa. Ophelia6, 1–182.

    Google Scholar 

  • Foster-Smith, R., 1975. The effect of concentration of suspension on the filtration rate and pseudofecal production forMytilus edulis L.,Cerastoderma edule L. andVenerupis pullastra (Montagu). J. exp. mar. Biol. Ecol.17, 1–22.

    Article  Google Scholar 

  • Frankenberg, D., Coles, S. L. & Johannes, R. E., 1967. The potential trophic significance ofCallianassa major fecal pellets. Limnol. Oceanogr.12, 113–120.

    Google Scholar 

  • — & Smith, K. L., 1967. Coprophagy in marine animals. Limnol. Oceanogr.12, 443–450.

    Google Scholar 

  • Gauld, D. T., 1957. A peritrophic membrane in calanoid copepods. Nature, Lond.179, 325–326.

    Google Scholar 

  • Gentry & Wiegert, 1969. Assembly and operating instructions for the Phillipson oxygen microbomb calorimeter. Gentry & Wiegert Instr. Inc., Aiken, 4 pp.

    Google Scholar 

  • Gerlach, S. A., 1971. On the importance of marine meiofauna for benthos communities. Oecologia6, 176–190.

    Article  Google Scholar 

  • Goerke, H., 1971a. Nahrungsaufnahme, Nahrungsausnutzung und Wachstum vonNereis virens (Polychaeta, Nereidae). Veröff. Inst. Meeresforsch. Bremerh.13, 51–78.

    Google Scholar 

  • — 1971b. Die Ernährungsweise derNereis-Arten (Polychaeta, Nereidae) der deutschen Küsten. Veröff. Inst. Meeresforsch. Bremerh.13, 1–50.

    Google Scholar 

  • Gray, J. S., 1966. Selection of sands byProtodrilus symbioticus Giard. Veröff. Inst. Meeresforsch. Bremerh. (Sonderbd)2, 105–116.

    Google Scholar 

  • — 1967. Substrate selection by the archiannelidProtodrilus rubropharyngeus. Helgoländer wiss. Meeresunters.15, 255–269.

    Article  Google Scholar 

  • Guille, A. & Soyer, J., 1969. La fauna benthique des substrats meubles de Banyuls-sur-mer. Prémiers données qualitatives et quantitatives. Vie Milieu (B)19, 323–359.

    Google Scholar 

  • Hartwig, E., 1973. Die Ciliaten des Gezeiten-Sandstrandes der Nordseeinsel Sylt. II. Ökologie. Mikrofauna Meeresboden21, 1–171.

    Google Scholar 

  • Hughes, R. N., 1970. An energy budget for a tidal-flat population of the bivalveScrobicularia plana. J. Anim. Ecol.39, 357–379.

    Google Scholar 

  • Hylleberg, J., 1975. Selective feeding byAbarenicola pacifica with notes onAbarenicola vagabunda and a concept of gardening in lugworms. Ophelia14, 113–137.

    Google Scholar 

  • Jørgensen, C. B., 1962. The food of filter feeding organisms. Rapp. P.-V. Réun. Cons. perm. int. Explor. Mer153, 39–47.

    Google Scholar 

  • — 1966. Biology of suspension feeding. Pergamon Press, New York, 357 pp.

    Google Scholar 

  • Johannes, R. E. & Satoni, M., 1966. Composition and nutritive value of fecal pellets of a marine crustacean. Limnol. Oceanogr.11, 191–197.

    CAS  Google Scholar 

  • Jones, N. S., 1956. The fauna and biomass of a muddy sand deposit off Port Erin, I.O.M. J. Anim. Ecol.25, 217–252.

    Google Scholar 

  • Kersting, K., 1972. A nitrogen correction for caloric values. Limnol. Oceanogr.17, 643–644.

    CAS  Google Scholar 

  • Krüger, F., 1971. Bau und Leben des WattwurmesArenicola marina. Helgoländer wiss. Meeresunters.22, 149–200.

    Article  Google Scholar 

  • Krumbein, W. E., 1971. Sediment microbiology and grain-size distribution as related to tidal movement, during the first mission of the West German Underwater Laboratory. “Helgoland”. Mar. Biol.10, 101–112.

    Google Scholar 

  • Lindeman, R. L., 1942. The trophic-dynamic aspect of ecology. Ecology23, 399–418.

    Google Scholar 

  • MacGinitie, G. E., 1932. The role of bacteria as food for bottom animals. Science, N. Y.76, 490.

    Google Scholar 

  • McIntyre, A. D., 1964. Meiobenthos of sublittoral muds. J. mar. biol. Ass. U.K.44, 665–674.

    Google Scholar 

  • — 1971. Marine zoobenthos in the light of recent research. Proc. Joint Oceanogr. Assembly, Tokyo1970, 139–141.

    Google Scholar 

  • Meadows, P. S. & Anderson, J. G., 1966. Micro-organisms attached to marine and freshwater sand grains. Nature, Lond.212, 1059–1060.

    Google Scholar 

  • Moore, H. B., 1931a. The specific identification of fecal pellets. J. mar. biol. Ass. U.K.17, 359–365.

    Google Scholar 

  • — 1931b. The form of fecal pellets and specific identification. Nature, Lond.127, 818.

    Google Scholar 

  • Moshiri, G. G., 1968. Energetics of the predaceous zooplankterLeptodora kindtii (Focke) and selected prey species. Ph. D., Diss. Univ. of Pittsburgh, 148 pp. (Unpubl.).

  • Moshiri, G. A. & Cummins, K. W., 1969. Calorific values ofLeptodora kindtii Focke (Crustacea Cladocera) and selected food organisms. Arch. Hydrobiol.66, 91–99.

    Google Scholar 

  • Muus, B. J., 1967. The fauna of Danish estuaries and lagoons: Distribution and ecology of dominating species in the shallow reaches of the mesohaline zone. Meddr. Danm. Fisk,-og Havunders.5, 3–316.

    Google Scholar 

  • Newell, R., 1965. The role of detritus in the nutrition of two marine deposit feeders, the prosobranchHydrobia ulvae and the bivalveMacoma baltica. Proc. zool. Soc. Lond.144, 25–45.

    Google Scholar 

  • — & Bayne, B. L., 1973. A review on temperature and metabolic acclimation in intertidal marine invertebrates. Neth. J. Sea Res.7, 421–433.

    Google Scholar 

  • Nichols, F. H., 1974. Sediment turnover by a deposit-feeding polychaete. Limnol. Oceanogr.19, 945–950.

    Google Scholar 

  • Odum, E. P., 1959. Fundamentals of ecology. Philadelphia, Saunders, 546 pp.

    Google Scholar 

  • Paine, R. T., 1964. Ash and caloric determinations of sponge and opisthobranch tissues. Ecology45, 384–387.

    Google Scholar 

  • — 1966. Endothermy in bomb calorimetry. Limnol. Oceanogr.11, 126–129.

    CAS  Google Scholar 

  • Pamatmat, M. M., 1968. Ecology and metabolism of a benthic community on an intertidal sand flat. Int. Revue ges. Hydrobiol.53, 211–298.

    Google Scholar 

  • Phillipson, J., 1964. A miniature bomb calorimeter for small biological samples. Oikos15, 130–139.

    Google Scholar 

  • Prus, T., 1970. Calorific value of animals as an element of bioenergetical investigations. Polskie Arch. Hydrobiol.17, 183–199.

    Google Scholar 

  • Rachor, E., 1975. Quantitative Untersuchungen über das Meiobenthos der nordatlantischen Tiefsee. Meteor Forsch. Ergebn. (D)21, 1–10.

    Google Scholar 

  • Richman, S., 1971. Calorimetry. In: A manual on the methods for the asessment of secondary productivity in fresh waters. Ed. by W. T. Edmondson & G. G. Winberg. Blackwell, Oxford 146–149 (IPB Handbook Nr. 17).

    Google Scholar 

  • Romijn, C., 1946. Verbleibzeit und Durchgangszeit der Nahrung bei Vertebraten und Invertebraten. Tabul. biol.21 (1), 186–197.

    Google Scholar 

  • Scheibel, W. & Noodt, W., 1975. Population densities and characteristics of meiobenthos in different substrates in the Kiel Bay. Merentutkimuslait. Julk.239, 173–178.

    Google Scholar 

  • Steele, J. H., 1970. Marine Food Chains. University of California Press, Berkely, 552 pp.

    Google Scholar 

  • Stripp, K., 1969. Jahreszeitliche Fluktuationen von Makrofauna und Meiofauna in der Helgoländer Bucht. Veröff. Inst. Meeresforsch. Bremerh.12, 65–94.

    Google Scholar 

  • Tétry, A., 1959. Les sipunculiens. In: Traité de Zoologie. Ed. by P. P. Grassé. Masson, Paris,5, 785–854.

    Google Scholar 

  • Theede, H., 1963. Experimentelle Untersuchungen über die Filtrationsleistung der MiesmuschelMytilus edulis L. Kieler Meeresforsch.19, 20–41.

    Google Scholar 

  • Thiel, H., 1966. Quantitative Untersuchungen über die Meiofauna des Tiefseebodens (vorläufiges Ergebnis der “Meteor”-Expedition in den Indischen Ozean). Veröff. Inst. Meeresforsch. Bremerh. (Sonderbd)2, 131–147.

    Google Scholar 

  • Tietjen, J. H., 1969. The ecology of shallow water meiofauna in two New England estuaries. Oecologia2, 251–291.

    Article  Google Scholar 

  • Vinogradov, M. E., 1970. Vertical distribution of the oceanic zooplankton. Israel Program for Scient. Transl. Jerusalem, 339 pp.

  • Walter, M. D., 1973. Freßverhalten und Darminhaltsuntersuchungen bei Sipunculiden. Helgoländer wiss. Meeresunters.25, 486–494.

    Article  Google Scholar 

  • Whitlatch, R. B., 1974. Food-resource partitioning in the deposit-feeding polychaetePectinaria gouldii. Biol. Bull. mar. biol. Lab., Woods Hole147, 227–235.

    Google Scholar 

  • Wieser, W., 1960. Benthic studies in Buzzards Bay. II. The meiofauna. Limnol. Oceanogr.5, 121–137.

    Google Scholar 

  • Wigley, R. L. & McIntyre, A. D., 1964. Some quantitative comparisons on offshore meiobenthos and macrobenthos south of Martha's vineyard. Limnol. Oceanogr.9, 485–493.

    Google Scholar 

  • Yonge, C. M., 1928. Feeding mechanisms in the invertebrates. Biol. Rev.3, 21–76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dissertation aus dem Fachbereich Biologie der Universität Hamburg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, M.D. Nahrung und Freßverhalten bei Sedimentfressern dargestellt am Beispiel von Sipunculiden und Holothurien. Helgolander Wiss. Meeresunters 31, 191–221 (1978). https://doi.org/10.1007/BF02296997

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02296997