Skip to main content
  • Published:

Population genetic structure of mussels from the Baltic Sea

Abstract

In a macrogeographic survey, the population genetic structure of mussels from various regions of the Baltic Sea, a large semi-enclosed brackish-water basin, was examined with reference toMytilus edulis andM. galloprovincialis samples from the North Sea, Irish coast and southern Portugal. Electrophoretically detectable variation was analysed at 6 polymorphic enzyme loci (Ap, Est-D, Lap-2, Odh, Pgi andPgm). Evidence was provided of a remarkably large amount of biochemical genetic differentiation among ecologically and morphologically divergent mussel populations in the Baltic. Patterns of allele frequencies in low-salinity populations from the area of the Baltic Proper were demonstrated to be widely homogeneous but contrast strongly with those of the western Baltic, the latter resembling populations from marine habitats of the North Sea. Associated with a pronounced salinity gradient, the spatial heterogeneity in gene-pool structure is indicated by steep clines of allele frequency changes in the area of the eastern Danish isles. The adaptive significance of the observed allozymic variation is suggested. From genetic distance estimates, the subdivision of population structure is discussed in relation to the significant amount of differentiation detected withinMytilus populations to date and to the evolutionary time required for the divergence of Baltic mussel populations. The allozymic data provide evidence for the genetic distinctiveness of mussels from the low-salinity areas of the Baltic. Their position at the specific or subspecific level of classification requires further consideration.

Literature Cited

  • Ahmad, M., Skibinski, D. O. F. & Beardmore, J. A., 1977. An estimate of amount of genetic variation in the common musselMytilus edulis. — Biochem. Genet.15, 833–846.

    Article  CAS  PubMed  Google Scholar 

  • Avise, J. C., 1976. Genetic differentiation during speciation. — In: Molecular evolution. Ed. by F. J. Ayala. Sinauer Ass., Sunderland, 106–122.

    Google Scholar 

  • Ayala, F. J., Powell, J. R., Tracey, M. L., Mourao, C. A. & Péres-Salas, S., 1972. Enzyme variability in theDrosophila willistoni group. IV Genic variation in natural populations ofDrosophila willistoni. — Genetics70, 113–139.

    CAS  PubMed  Google Scholar 

  • Ayala, F. J., Tracey, M. L., Barr, L. G., McDonald, J. F. & Péres-Salas, S., 1974. Genetic variation in natural populations of fiveDrosophila species and the hypothesis of the selective neutrality of protein polymorphisms. — Genetics77, 343–384.

    CAS  PubMed  Google Scholar 

  • Beaumont, A. R. & Beveridge, C. M., 1983. Resolution of phosphoglucomutase isozymes inMytilus edulis L. — Mar. Biol. Lett.4, 97–103.

    CAS  Google Scholar 

  • Beaumont, A. R., Day, T. R. & Gäde, G., 1980. Genetic variation at the octopine dehydrogenase locus in the adductor muscle ofCerastoderma edule (L.) and six other bivalve species. — Mar. Biol. Lett. 1, 137–148.

    CAS  Google Scholar 

  • Bulnheim, H.-P., 1984. Biochemisch-genetische Untersuchungen zur Art- und Populationsdifferenzierung bei Amphipoden und Isopoden. — Zool. Beitr.28, 349–368.

    Google Scholar 

  • Bulnheim, H.-P. & Scholl, A., 1981. Genetic variation between geographic populations of the amphipodsGammarus zaddachi andG. salinus. — Mar. Biol.64, 105–115.

    Article  Google Scholar 

  • Bulnheim, H.-P. & Fava, G., 1982. Colour polymorphism and genetic variation inIdotea balthica populations from the Adriatic Sea and Baltic Sea. — Genetica59, 177–190.

    Google Scholar 

  • Bulnheim, H.-P. & Scholl, A., 1982. Polymorphism of mannose phosphate isomerase in North Sea and Baltic Sea populations of the amphipodsGammarus zaddachi andG. salinus. — Mar. Biol.71, 163–166.

    Article  Google Scholar 

  • Ferguson, A., 1980. Biochemical systematics and evolution. Blackie, Glasgow, 194 pp.

    Google Scholar 

  • Fevolden, S. E. & Garner, S. P., 1986. Population genetics ofMytilus edulis (L.) from Oslofjorden, in oil-polluted and non oil-polluted water. — Sarsia71, 247–257.

    Google Scholar 

  • Gartner-Kepkay, K. E., Dickie, L. M., Freeman, K. R. & Zouros, E., 1980. Genetic differences and environments of mussel populations in the Maritime Provinces. — Can. J. Fish. aquat. Sci.37, 775–782.

    Google Scholar 

  • Gartner-Kepkay, K. E., Zouros, E., Dickie, L. M. & Freeman, K. R., 1983. Genetic differentiation in the face of gene flow: a study of mussel populations from a single Nova Scotian embayment. —Can. J. Fish. aquat. Sci.40, 443–451.

    Google Scholar 

  • Gosling, E. M., 1984. The systematic status ofMytilus galloprovincialis in Western Europe: a review. —Malacologia25, 551–568.

    Google Scholar 

  • Gosling, E. M. & Wilkins, N. P., 1981. Ecological genetics of the musselsMytilus edulis andM. galloprovincialis on Irish coasts. — Mar. Ecol. Prog. Ser.4, 221–227.

    Google Scholar 

  • Harris, H. & Hopkinson, D. A., 1976. Handbook of enzyme electrophoresis in human genetics. —North Holland Publ., Amsterdam.

    Google Scholar 

  • Kautsky, N., 1982. Growth and size structure in a BalticMytilus edulis population. — Mar. Biol.68, 117–133.

    Google Scholar 

  • Koehn, R. K., 1978. Physiology and biochemistry of enzyme variation: the interface of ecology and population genetics. In: Ecological genetics: the interface. Ed. by P. F. Brussard. Springer, New York, 51–72.

    Google Scholar 

  • Koehn, R. K., 1983. Biochemical genetics and adaption in molluscs. In: The Mollusca. Ed. by K. M. Wilbur. Acad. Press, New York,2, 305–330.

    Google Scholar 

  • Koehn, R. K. & Gaffney, P. M., 1984. Genetic heterozygosity and growth rate inMytilus edulis. —Mar. Biol.82, 1–7.

    Article  Google Scholar 

  • Koehn, R. K., Milkman, R. & Mitton, J. B., 1976. Population genetics of marine pelecypods. IV. Selection, migration and genetic differentiation in the blue musselMytilus edulis. — Evolution30, 2–32.

    Google Scholar 

  • Koehn, R. K., Hall, J. G., Innes, D. J. & Zera, A. J., 1984. Genetic differentiation ofMytilus edulis in eastern North America. — Mar. Biol.79, 117–126.

    Article  Google Scholar 

  • Koehn, R. K. & Immermann, F. W., 1981. Biochemical studies of aminopeptidase polymorphism inMytilus edulis. I. Dependence of enzyme activity on season, tissue and genotype. — Biochem. Genet.19, 1115–1142.

    CAS  PubMed  Google Scholar 

  • Koehn, R. K. & Siebenaller, J. F., 1981. Biochemical studies of aminopeptidase polymorphism inMytilus edulis. II. Dependence of reaction rate on physical factors and enzyme concentration. —Biochem. Genet.19, 1143–1162.

    CAS  PubMed  Google Scholar 

  • Levinton, J. S. & Suchanek, T. H., 1978. Geographic variation, niche breadth and genetic differentiation at different geographic scales in the musselsMytilus californianus andM. edulis. — Mar. Biol.49, 363–375.

    Article  Google Scholar 

  • Moore, M. N., Koehn, R. K. & Bayne, B. L., 1980. Leucine aminopeptidase (aminopeptidase-I), N-acetyl-β-hexoseaminidase and lysosomes in the musselMytilus edulis L., in response to salinity changes. — J. exp. Zool.214, 239–249.

    Article  CAS  Google Scholar 

  • Murdock, E. A., Ferguson, A. & Seed, R., 1975. Geographical variation in leucine aminopeptidase inMytilus edulis L. from the Irish coasts. — J. exp. mar. Biol. Ecol.19, 33–41.

    CAS  Google Scholar 

  • Nei, M., 1972. Genetic distance between populations. — Am. Nat.106, 283–292.

    Article  Google Scholar 

  • Remane, A. & Schlieper, C., 1971. The biology of brackish water. Schweizerbart, Stuttgart, 372 pp.

    Google Scholar 

  • Scholl, A., Corzilius, B. & Villwock, W., 1978. Beitrag zur Verwandtschaftsanalyse altweltlicher Zahnkarpfen der Tribus Aphaniini (Pisces, Cyprinodontidae) mit Hilfe elektrophoretischer Untersuchungsmethoden. — Z. zool. Syst. Evolutionsforsch.16, 116–132.

    Google Scholar 

  • Scopes, R. K., 1968. Methods for starch gel electrophoresis of sarcoplasmic proteins. An investigation of the relative mobilities of the glycolytic enzymes from the muscles of a variety of species. —Biochem. J.107, 139–150.

    CAS  PubMed  Google Scholar 

  • Segerstråle, S., 1957. Baltic Sea. In: Treatise on marine ecology and paleoecology. Ed. by J. W. Hedgpeth. Geol. Soc. Am., New York, 1, 751–800. (Mem. geol. Soc. Am. 67.)

    Google Scholar 

  • Shaw, C. R. & Prasad, R., 1970. Starch gel electrophoresis of enzymes — a compilation of recipes. —Biochem. Genet.4, 297–320.

    CAS  PubMed  Google Scholar 

  • Skibinski, D. O. F., Ahmad, M. & Beardmore, J. A., 1978. Genetic evidence for naturally occurring hybrids betweenMytilus edulis andMytilus galloprovincialis. — Evolution32, 354–364.

    Google Scholar 

  • Skibinski, D. O. F. & Beardmore, J. A., 1979. A genetic study of intergradation betweenMytilus edulis andMytilus galloprovincialis. — Experientia35, 1442–1444.

    Article  CAS  PubMed  Google Scholar 

  • Skibinski, D. O. F., Cross, T. F. & Ahmad, M., 1980. Electrophoretic investigation of systematic relationships in the marine musselsModiolus modiolus, Mytilus edulis andMytilus galloprovincialis (Mytilidae; Mollusca). — Biol. J. Linn. Soc.13, 65–74.

    Google Scholar 

  • Skibinski, D. O. F., 1983. Natural selection in hybrid mussel populations. In: Protein polymorphism: Adaptive and taxonomic significance. Ed. by G. S. Oxford & D. Rollinson. Acad. Pr., London, 283–298.

    Google Scholar 

  • Skibinski, D. O. F., Beardmore, J. A. & Cross, T. F., 1983. Aspects of the population genetics ofMytilus (Mytilidae; Mollusca) in the British Isles. — Biol. J. Linn. Soc.19, 137–183.

    Google Scholar 

  • Snyder, T. P. & Gooch, J. L., 1973. Genetic differentiation inLittorina saxatilis (Gastropoda). — Mar. Biol.22, 177–182.

    Article  Google Scholar 

  • Spencer, N., Hopkinson, D. A. & Harris, H., 1964. Phosphoglucomutase polymorphism in man. —Nature, Lond.204, 742–745.

    CAS  Google Scholar 

  • Tedengren, M. & Kautsky, N., 1986. Comparative studies of the physiology and its probable effect on size in blue mussels (Mytilus edulis L.) from the North Sea and the northern Baltic Proper. —Ophelia25, 147–155.

    Google Scholar 

  • Templeton, A. R., 1981. Mechanism of speciation — a population genetic approach. — A. Rev. Ecol. Syst.12, 23–48.

    Google Scholar 

  • Theisen, B. F., 1978. Allozyme clines and evidence of strong selection in three loci inMytilus edulis L. (Bivalvia) from Danish waters. — Ophelia17, 135–142.

    Google Scholar 

  • Voipio, A. (Ed.), 1981. The Baltic Sea. Elsevier, Amsterdam, 418 pp.

    Google Scholar 

  • Ward, R. D. & Beardmore, J. A., 1977. Protein variation in the plaice,Pleuronectes platessa L. —Genet. Res.30, 45–62.

    CAS  PubMed  Google Scholar 

  • Widdows, J., 1978. Physiological indices of stress inMytilus edulis. — J. mar. biol. Ass. U.K.58, 125–142.

    CAS  Google Scholar 

  • Winterhalter, B., Feodén, T., Ignatius, H., Axberg, S. & Niemiströ, L., 1981. Geology of the Baltic Sea. In: The Baltic Sea. Ed. by A. Voipio. Elsevier, Amsterdam, 1–121.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bulnheim, H.P., Gosling, E. Population genetic structure of mussels from the Baltic Sea. Helgolander Meeresunters 42, 113–129 (1988). https://doi.org/10.1007/BF02364207

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02364207

Keywords