Skip to main content
  • Published:

Flagellar regeneration in the scaly green flagellateTetraselmis striata (Prasinophyceae): regeneration kinetics and effect of inhibitors

Abstract

Flagellar regeneration after experimental amputation was studied in synchronized axenic cultures of the scaly green flagellateTetraselmis striata (Prasinophyceae). After removal of flagella by mechanical shearing, 95% of the cells regrow all four flagella (incl. the scaly covering) to nearly full length with a linear velocity of 50 nm/min under standard conditions. Flagellar regeneration is independent of photosynthesis (no effect of DCMU; the same regeneration rate in the light or in the dark), but depends on de novo protein synthesis: cycloheximide at a low concentration (0.35 μM) blocks flagellar regeneration reversibly. No pool of flagellar precursors appears to be present throughout the flagellated phase of the cell cycle. A transient pool of flagellar precursors, sufficient to generate 2.5 μm of flagellar length, however, develops during flagellar regeneration. Tunicamycin (2 μg/ml) inhibits flagellar regeneration only after a second flagellar amputation, when flagella reach only one third the length of the control. Flagellar regeneration inT. striata differs considerably from that ofChlamydomonas reinhardtii and represents an excellent model system for the study of synchronous Golgi apparatus (GA) activation, and transport and exocytosis of GA-derived macromolecules (scales).

Literature Cited

  • Auclair, W. & Siegel, B. W., 1966. Cilia regeneration in the sea urchin embryo: evidence for a pool of ciliary proteins. —Science, N. Y.154, 913–915.

    CAS  Google Scholar 

  • Baker, E. J., Schloss, J. A. & Rosenbaum, J. L., 1984. Rapid changes in tubulin RNA synthesis and stability induced by deflagellation inChlamydomonas. —J. Cell Biol.99, 2074–2081.

    Article  CAS  PubMed  Google Scholar 

  • Bloodgood, R. A., 1982. Dynamic properties of the flagellar surface. —Symp. Soc. exp. Biol.35, 353–380.

    CAS  PubMed  Google Scholar 

  • Brunke, K. J., Young, E. E., Buchbinder, B. U. & Weeks, D. P., 1982. Coordinate regulation of the four tubulin genes ofChlamydomonas reinhardi. —Nucleic Acids Res.10, 1295–1310.

    CAS  PubMed  Google Scholar 

  • Ceriotti, G., 1952. Microchemical determination of DNA. —J. biol. Chem.198, 297–303.

    CAS  PubMed  Google Scholar 

  • Coggin, S. J. & Kochert, G., 1986. Flagellar development and regeneration inVolvox carteri (Chlorophyta). —J. Phycol.22, 370–381.

    CAS  Google Scholar 

  • Fulton, C. & Kowit, J., 1975. Programmed synthesis of flagellar tubulin during cell differentiation inNaegleria. —Ann. N. Y. Acad. Sci.253, 318–332.

    CAS  PubMed  Google Scholar 

  • Geetha-Habib, M. & Bouck, G. B., 1982. Synthesis and mobilization of flagellar glycoproteins during regeneration inEuglena. —J. Cell Biol.93, 432–441.

    Article  CAS  PubMed  Google Scholar 

  • Guttman, S. D. & Gorovsky, M. A., 1979. Cilia regeneration in starvedTetrahymena: an inducible system for studying gene expression and organelle biogenesis. —Cell17, 307–317.

    Article  CAS  PubMed  Google Scholar 

  • Hoshaw, R. W. & Rosowski, J. R., 1973. Methods for microscopic algae. In: Handbook of phycological methods. Culture methods and growth measurements. Ed. by J. R. Stein. Cambridge University Press, Cambridge, 53–67.

    Google Scholar 

  • Huang, B. P.-H., 1986.Chlamydomonas reinhardtii: a model system for the genetic analysis of flagellar structure and motility. —Int. Rev. Cytol.99, 181–215.

    Google Scholar 

  • Huber, M. E., Wright, W. G. & Lewin, R. A., 1986. Divalent cations and flagellar autotomy inChlamydomonas reinhardtii (Volvocales, Chlorophyta). —Phycologia25, 408–411.

    CAS  Google Scholar 

  • Lefebvre, P. A., Nordstrom, S. A., Moulder, J. E. & Rosenbaum, J. L., 1978. Flagellar elongation and shortening inChlamydomonas. IV. Effects of flagellar detachment, regeneration, and resorption on the induction of flagellar protein synthesis. —J. Cell Biol.78, 8–27

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre, P. A., Silflow, C. D., Wieben, E. D. & Rosenbaum, J. L., 1980. Increased levels of mRNAs for tubulin and other flagellar proteins after amputation or shortening ofChlamydomonas flagella. —Cell 20, 469–477.

    Article  CAS  PubMed  Google Scholar 

  • Lewin, R. A., 1953. Studies on the flagella of algae. II. Formation of flagella byChlamydomonas in light and darkness. —Ann. N. Y. Acad. Sci.56, 1091–1093.

    CAS  PubMed  Google Scholar 

  • Lewin, R. A. & Lee, K. W., 1985. Autotomy of algal flagella: electron microscope studies ofChlamydomonas (Chlorophyceae) and Tetraselmis (Prasinophyceae). —Phycologia24, 311–316.

    Google Scholar 

  • Lewin, R. A., Lee, T. H. & Fang, L. S., 1982. Effects of various agents on flagellar activity, flagellar autotomy and cell viability in four species ofChlamydomonas (Chlorophyta: Volvocales). —Symp. Soc. exp. Biol.35, 421–437.

    CAS  PubMed  Google Scholar 

  • L'Hernault, S. W. & Rosenbaum, J. L., 1983.Chlamydomonas α-tubulin is posttranslationally modified in the flagella during flagellar assembly —J. Cell Biol.97, 258–263.

    Article  PubMed  Google Scholar 

  • Lilley, R. Mc. C., Fitzgerald, M. P., Rienits, K. G. & Walker, D. A., 1975. Criteria of intactness and the photosynthetic activity of spinach chloroplast preparations. —New Phytol.75, 1–10.

    CAS  Google Scholar 

  • McFadden, G. I. & Wetherbee, R., 1985. Flagellar regeneration and associated scale deposition inPyramimonas gelidicola (Prasinophyceae, Chlorophyta). —Protoplasma128 31–37.

    Article  Google Scholar 

  • McFadden, G. I. & Melkonian, M., 1986a. Golgi apparatus activity and membrane flow during scale biogenesis in the green flagellateScherffelia dubia (Prasinophyceae). I.: Flagellar regeneration. —Protoplasma130, 186–198.

    Article  Google Scholar 

  • McFadden, G. I. & Melkonian, M., 1986b. Use of Hepes buffer for microalgal culture media and fixation for electron microscopy. —Phycologia25, 551–557.

    CAS  Google Scholar 

  • McFadden, G. I., Schulze, D., Surek, B., Salisbury, J. L. & Melkonian, M., 1987. Basal body reorientation mediated by a Ca2+-modulated contractile protein. —J. Cell Biol. (In press.)

  • McLachlan, J., 1973. Growth media-marine. In. Handbook of phycological methods. Culture methods and growth measurements. Ed. by J. R. Stein. Cambridge University Press, Cambridge, 25–51.

    Google Scholar 

  • Melkonian, M., 1982. Effect of divalent cations on flagellar scales in the green flagellateTetraselmis cordiformis. —Protoplasma111, 221–233.

    Article  CAS  Google Scholar 

  • Melkonian, M., 1987. Prasinophyceae. In: Handbook of protoctists. Ed. by L. Margulis, J. Corliss, M. Melkonian, D. J. Chapman. Jones & Bartlett, Boston (in press).

    Google Scholar 

  • Melkonian, M., Preisig, H. R. & Lechtreck, F., 1985a.Scourfieldia, a most unusual green flagellate. Second Int. Phycol. Congr., Copenhagen. Abstr. 107.

  • Melkonian, M., Reize, I. B. & McFadden, G. I., 1985b. Flagellar scales in the green flagellateTetraselmis striata: isolation, characterization and biogenesis. —Eur. J. Cell Biol.36, 44.

    Google Scholar 

  • Melkonian, M., McFadden, G. I., Reize, I. B. & Becker, D., 1986. Secretion of organic sales in green algae: secretory proteins are transported through the Golgi apparatus by cisternal progression. —Ber. dt. bot. Ges.99, 263–280.

    Google Scholar 

  • Melkonian, M., Reize, I. B. & Preisig, H. R., 1987a. Maturation of a flagellum/basal body requires more than one cell cycle in algal flagellates: studies onNephroselmis olivacea (Prasinophyceae). In: Molecular and cellular aspects of algal development. Ed. by W. Wiessner, D. G. Robinson, R. C. Starr. Springer, Berlin (in press).

    Google Scholar 

  • Melkonian, M., Becker, D., McFadden, G. I. & Reize, I. B., 1987b. Experimental analysis of membrane traffic during secretion of scales in green algae. In: Cell free analysis of membrane traffic. Ed. by J. Morre. Liss, New York (in press).

    Google Scholar 

  • Moestrup, Ø., 1982. Flagellar structure in algae: a review with new observations particularly on the Chrysophyceae, Phaeophyceae (Fucophyceae), Euglenophyceae andReckertia. —Phycologia21, 427–528.

    Google Scholar 

  • Nelsen, E. M., 1975. Regulation of tubulin during ciliary regeneration in non-growingTetrahymena. —Exp. Cell Res.94, 152–153.

    Article  CAS  PubMed  Google Scholar 

  • Quader, H. & Glas, R., 1984. Geißelregeneration beiChlamydomonas reinhardtii. —Biol. unserer Zeit14, 125–127.

    Article  Google Scholar 

  • Randall, J., 1969. The flagellar apparatus as a model organelle for the study of growth and morphopoiesis. —Proc. R. Soc. (Ser. B)173, 31–62.

    CAS  Google Scholar 

  • Remillard, S. P. & Witman, G. B., 1982. Synthesis, transport, and utilization of specific flagellar proteins during flagellar regeneration inChlamydomonas. —J. Cell Biol.93, 615–631.

    Article  CAS  PubMed  Google Scholar 

  • Ricketts, T. R., 1974. Cultural requirements of the Prasinophyceae. —Nova Hedwigia25, 683–690.

    Google Scholar 

  • Ricketts, T. R., 1979. The induction of synchronous cell division inPlatymonas striata Butcher (Prasinophyceae). —Br. phycol. J.14, 219–223.

    Google Scholar 

  • Rosenbaum, J. L. & Child, F. M., 1967. Flagellar regeneration in protozoan flagellates. —J. Cell Biol.34, 345–364.

    Article  CAS  PubMed  Google Scholar 

  • Rosenbaum, J. L., Moulder, J. E. & Ringo, D. L., 1969. Flagellar elongation and shortening inChlamydomonas. The use of cycloheximide and colchicine to study the synthesis and assembly of flagellar proteins. —J. Cell Biol.41, 600–619.

    Article  CAS  PubMed  Google Scholar 

  • Schloss, J. A., Silflow, C. D. & Rosenbaum, J. L., 1984. mRNA abundance changes during flagellar regeneration inChlamydomonas reinhardtii. —Mol. cell. Biol.4, 424–434.

    CAS  PubMed  Google Scholar 

  • Surek, B. & Melkonian, M., 1980. The filose amoebaVampyrellidium perforans nov. sp. (Vampyrellidae, Aconchulinida): axenic culture, feeding behavior and host range specificity. —Arch. Protistenk.123, 166–191.

    Google Scholar 

  • Williams, B. D., Mitchell, D. R. & Rosenbaum, J. L., 1986. Molecular cloning and expression of flagellar radial spoke and dynein genes ofChlamydomonas. —J. Cell Biol.103, 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Witman, G. B., Carlson, K., Berliner, J. & Rosenbaum, J. L., 1972.Chlamydomonas flagella I. Isolation and electrophoretic analysis of microtubules, matrix, membranes and mastigonemes. —J. Cell Biol.54, 507–539.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reize, I.B., Melkonian, M. Flagellar regeneration in the scaly green flagellateTetraselmis striata (Prasinophyceae): regeneration kinetics and effect of inhibitors. Helgolander Meeresunters 41, 149–164 (1987). https://doi.org/10.1007/BF02364697

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02364697

Keywords