Skip to main content
  • Published:

Heat production inLittorina saxatilis Olivi andLittorina neritoides L. (gastropoda: Prosobranchia) during an experimental exposure to air

Abstract

The adaptation of littorinid molluscs to prolonged aerial exposure was investigated by the determination of heat production.Littorina saxatilis, inhabiting the upper eulittoral, reached a maximum metabolic activity during submersion (heat production: 3.26×10−3J s−1 (gadw)−1. On the first three days of desiccation, the heat production was continuously reduced to 40% of the submersed value. A prolonged aerial exposure was lethal for this species. In the supralittoralL. neritoides, three stages of energy metabolism could be observed: An intermediate heat production during submersion (1.97×10−3Js−1 (gadw)−1), an increased metabolism during the first hour of aerial exposure (heat production 204% of submersed value), and a minimal metabolism (39% of the submersed value and 19% of maximum value) during the following days and weeks of desiccation. Recovery depended on water salinity;L. saxatilis proved to be less euryhaline thanL. neritoides. Thus, the metabolic adaptations correlate with the level of littoral habitat; inactivity combined with a drastically reduced energy consumption is a metabolically economic way to survive in periodically dry environments.

Literature Cited

  • Behrens, S., 1972. The role of wave impact and desiccation in the distribution ofLittorina sitkana (Philippi). Veliger15, 129–132.

    Google Scholar 

  • Bengtsson, W., 1982. Aktivität des Elektronen-Transport-Systems (ETS) und Wärmeproduktion mariner Sedimente. Diss., Univ. Kiel, 116 pp.

  • Berger, V. Y., 1975. The changes of euryhalinity in ontogenesis and adaptations connected with reproduction of the White Sea molluscLittorina saxatilis. —Biol. Morja, Vladiv.1, 43–50.

    Google Scholar 

  • Berger, V. Y., 1978. A study of salinity adaptations of the molluskLittorina sitchana with relation to ideas on the evolution of the genusLittorina. —Zool. Zh.57, 1786–1789.

    Google Scholar 

  • Berger, V. Y. & Kuz'min, A. N., 1978. Effect of low salinity on the development of some White Sea mollusks. —Zool. Zh.57, 1632–1636.

    Google Scholar 

  • Berry, A. J., 1961. Some factors affecting the distribution ofLittorina saxatilis (Olivi) —J. Anim. Ecol.30, 27–45.

    Google Scholar 

  • Broekhuysen, G. J., 1940. A preliminary investigation of the importance of desiccation, temperature and salinity as factors controlling the vertical distribution of certain intertidal marine gastropods in False Bay, South Africa. —Trans. R. Soc. S. Afr.28, 255–292.

    Google Scholar 

  • Clyne, P. M. & Duffus, J. H., 1979. A preliminary study of variation in reproduction ofLittorina rudis. —J. moll. Stud.45, 178–185.

    Google Scholar 

  • Daguzan, J., 1975. Recherches sur les Littorinidae. Thèse, Univ. Rennes, 189 pp.

  • Fraenkel, G., 1961. Resistance to high temperatures in a Mediterranean snail,L. neritoides. —Ecology42, 604–606.

    Google Scholar 

  • Fretter, V., 1980. Gross anatomy of the female genital duct of British U.K.Littorina spp. —J. moll. Stud.46, 148–153.

    Google Scholar 

  • Fretter, V. & Manly, R., 1977. The settlement and early benthic life ofLittorina neritoides (L.) at Wembury, S. Devon (England). —J. moll. Stud.43, 255–262.

    Google Scholar 

  • Hammen, C. S., 1976. Respiratory adaptations: Invertebrates In: Estuarine processes. Ed. by M. Wiley, Acad. Press, New York,1, 347–355.

    Google Scholar 

  • Hammen, C. S., 1979. Metabolic rates of marine bivalve molluscs determined by calorimetry. —Comp. Biochem. Physiol.62(A), 955–969.

    Article  Google Scholar 

  • Heller, J., 1975. The taxonomy of some BritishLittorina species' with notes on their reproduction (Mollusca: Prosobranchia). —Zool. J. Linn. Soc.56, 131–151.

    Google Scholar 

  • Hughes, R. N. & Roberts, D. J., 1980. Reproductive effort of winkles (Littorina spp.) with contrasted methods of reproduction. —Oecologia47, 130–136.

    Article  Google Scholar 

  • Kronberg, I., 1983. Ökologie der Schwarzen Zone im marinen Felslitoral: Monographie eines extremen Lebensraumes. Diss., Univ. Kiel, 237 pp.

  • Kronberg, I., 1988. Structure and adaptation of the fauna in the black zone (littoral fringe) along rocky shores in northern Europe. —Mar. Ecol. Prog. Ser.49, 95–106.

    Google Scholar 

  • Mayes, P. A., 1962. Comparative investigations of the euryhaline character ofLittorina and the possible relationship to intertidal zonation. —Nature, Lond.195, 1269–1270.

    Google Scholar 

  • McManus, D. P. & James, B. L., 1975. Anaerobic glucose metabolism in the digestive gland ofLittorina saxatilis rudis (Maton) and in the daughter sporocysts ofMicrophallus similis (Jäg) (Digenea: Microphallidae). —Comp. Biochem. Physiol.51 (B), 293–297.

    CAS  Google Scholar 

  • Newell, R. C., 1973. Factors affecting the respiration of intertidal invertebrates. —Am. Zool.13, 513–528.

    Google Scholar 

  • Newell, R. C., 1979. Biology of intertidal animals. Marine ecological surveys LTD., Faversham, Kent, 781 pp.

  • Pamatmat, M. M., 1978. Oxygen uptake and heat production in a metabolic conformer (Littorina irrorata) and a metabolic regulator (Uca pugnax). —Mar. Biol.48, 317–325.

    Article  Google Scholar 

  • Patanè, L., 1946. Anaerobiosi inLittorina neritoides, (L.). —Boll. Soc. ital. Biol. sper.21, 928–929.

    Google Scholar 

  • Patanè, L., 1955. Cinesi i tropismi, anidro- e anaerobiosi inLittorina neritoides (L.). —Boll. Sed. Accad. gioenia Sci. nat.3, 65–73.

    Google Scholar 

  • Pettitt, C. W., 1974. An indexed bibliography of the family Littorinidae (Gastropoda, Mollusca) 1758–1973. Manchester Museum, The Univ. Manchester, 36 pp.

    Google Scholar 

  • Remmert, H., 1968. DieLittorina-Arten: Kein Modell für die Entstehung der Landschnecken? —Oecologia2, 47–54.

    Article  Google Scholar 

  • Sandison, E. E., 1966. The oxygen consumption of some intertidal gastropods in relation to zonation. —J. Zool., Lond.149, 163–173.

    Google Scholar 

  • Schmitt, R. J., 1979. Mechanics and timing of egg capsule release by the littoral fringe periwinkleLittorina planaxis (Gastropoda: Prosobranchia), —Mar. Biol.50, 359–366.

    Article  Google Scholar 

  • Shick, M., 1981. Heat production and oxygen uptake in intertidal sea anemones from different shore heights during exposure to air. —Mar. Biol Lett.2, 225–236.

    Google Scholar 

  • Shick, J. M., Gnaiger, E., Widdows, J., Bayne, B. L. & Zwaan, A. de, 1986. Activity and metabolism in the musselMytilus edulis L. during intertidal hypoxia and aerobic recovery. —Physiol Zool.59, 627–642.

    Google Scholar 

  • Shick, J. M., Widdows, J. & Gnaiger E., 1988. Calorimetric studies of behavior, metabolism and energetics of sessile intertidal animals. —Am. Zool.28, 161–181.

    Google Scholar 

  • Todd, M. E., 1964. Osmotic balance inLittorina littorea, L. littoralis andL. saxatilis. —Physiol. Zool.37, 33–34.

    Google Scholar 

  • Vermeij, G. J., 1973. Morphological patterns in high intertidal gastropods: Adaptive strategies and their limitations. —Mar. Biol.20, 319–346.

    Article  Google Scholar 

  • Widdows, J. & Shick, J. M., 1985. Physiological responses ofMytilus edulis andCardium edule to aerial exposure. —Mar. Biol.85, 217–232.

    Article  Google Scholar 

  • Wieser, W., 1980. Metabolic end products in 3 species of marine gastropods. —J. mar. biol. Ass. U.K.60, 175–180.

    CAS  Google Scholar 

  • Zwaan, A. de, 1977, Anaerobic energy metabolism in bivalve molluscs. —Oceanogr. mar. Biol.15, 102–187.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kronberg, I. Heat production inLittorina saxatilis Olivi andLittorina neritoides L. (gastropoda: Prosobranchia) during an experimental exposure to air. Helgolander Meeresunters 44, 125–134 (1990). https://doi.org/10.1007/BF02365460

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02365460

Keywords