Skip to main content
  • Published:

Mussel beds — amensalism or amelioration for intertidal fauna?

Abstract

The faunal assemblages of a mussel bed (Mytilus edulis L.) and ambient sandflat were compared to study how a bioherm of suspension feeding organisms affects benthic communities in a tidal flat. During a survey of mussel beds in the Wadden Sea at the island of Sylt (North Sea), a total of 52 macrofaunal species and 44 meiobenthic plathelminth species were detected. They occupied different microhabitats in the mussel bed. 56% of the macrofauna species were dwelling in the sediment beneath the mussels and 42% were epibenthic or epiphytic. The latter were restricted in their occurrence to the mussel bed. Along a transect from the sandflat to the mussel bed the mean species densities of macrofauna did not differ significantly, while abundances were significantly lower in the mussel bed than in the sandflat. The composition of the assemblages shifted from a dominance of Polychaeta in the sandflat to Oligochaeta in the mussel bed. Surface filter-feeding polychaetes of the sandflat (Tharyx marioni) were displaced by deposit feeding polychaetes under the mussel cover (Capitella capitata, Heteromastus filiformis). The total meiobenthic density was lower and single taxa (Ostracoda, Plathelminthes, Nematoda) were significantly less abundant in the mud of the mussel bed. The plathelminth assemblage was dominated by grazing species (Archaphanostoma agile), and differed in community structure from a sandflat aseemblage. An amensalistic relationship was found between the suspension-feeding mussels and suspension-feeding infauna, while deposit-feeders were enhanced. The presence of epibenthic microhabitats results in a variety of trophic groups co-occurring in a mussel bed. This is hypothesized as trophic group amelioration and described as an attribute of heterotrophic reefs.

Literature Cited

  • Armonies, W. & Hellwig, M., 1986. Quantitative extraction of living meiofauna from marine and brackish muddy sediments. — Mar. Ecol. Prog. Ser.29, 37–43.

    Google Scholar 

  • Asmus, H., 1987. Secondary production of an intertidal mussel bed community related to its storage and turnover compartments. — Mar. Ecol. Prog. Ser.39, 251–266.

    Google Scholar 

  • Beukema, J. J., 1976. Biomass and species richness of the macrobenthic animals living on the tidal flats of the Dutch Wadden Sea. — Neth. J. Sea Res.10, 236–261.

    Google Scholar 

  • Beukema, J. J., 1979. Biomass and species richness of the macrobenthic animals living on a tidal flat area in the Dutch Wadden Sea: effects of a severe winter. — Neth. J. Sea Res.13, 203–223.

    Google Scholar 

  • Beukema, J. J. & Vlas, J. de, 1989. Tidal-current transport of thread-drifting postlarval juveniles of the bivalveMacoma balthica from the Wadden Sea to the North Sea. — Mar. Ecol. Prog. Ser.52, 193–200.

    Google Scholar 

  • Brenchley, G. A., 1982. Mechanisms of spatial competition in marine soft-bottom communities. —J. exp. mar. Biol. Ecol.60, 17–33.

    Article  Google Scholar 

  • Commito, J. A., 1987. Adult-larval interactions: predictions, mussels and cocoons. — Estuar. coast. Shelf Sci.25, 599–606.

    Article  Google Scholar 

  • Commito, J. A. & Boncavage, E. M., 1989. Suspension-feeders and coexisting infauna: an enhancement counterexample. — J. exp. mar. Biol. Ecol.125, 33–42.

    Article  Google Scholar 

  • Dittmann, S., 1984. Die Turbellarienfauna der Schlicksedimente im Königshafen der Nordseeinsel Sylt. Dipl.-Arb., Univ. Göttingen, 93 pp.

  • Dittmann, S. 1987. Die Bedeutung der Biodeposite für die Benthosgemeinschaft der Wattsedimente. Unter besonderer Berücksichtigung der MiesmuschelMytilus edulis L. Diss., Univ. Göttingen, 182 pp.

  • Dittmann, S. & Reise, K., 1985. Assemblage of free-living Plathelminthes on an intertidal mud flat in the North Sea. — Microfauna mar.2, 95–115.

    Google Scholar 

  • Dubilier, N., 1988. H2S — a settlement cue or a toxic substance forCapitella sp. I larvae? — Biol. Bull. mar. biol. Lab., Woods Hole174, 30–38.

    CAS  Google Scholar 

  • Fauchald, K. & Jumars, P. A., 1979. The diet of worms: a study on polychaete feeding guilds. —Oceanogr. mar. Biol.17, 193–284.

    Google Scholar 

  • Gee, J. M., Warwick, R. M., Schaaning, M., Berge, J. A. & Ambrose, W. G., 1985. Effects of organic enrichment on meiofaunal abundance and community structure in sublittoral soft sediments. —J. exp. mar. Biol. Ecol.91, 247–262.

    Article  Google Scholar 

  • Grassle, J. E. & Grassle, J. P., 1974. Opportunistic life histories and genetic systems in marine benthic polychaetes. — J. mar. Res.32, 254–289.

    Google Scholar 

  • Gusky, M., 1987. Populationsstrukturen und Beutespektrum der Einsiedlerkrebse (Pagurus bernhardus) im Eulittoral und Sublittoral des Wattenmeeres. Dipl.-Arb., Univ. Göttingen, 89 pp.

  • Hagmeier, A. & Kändler, R., 1927. neue Untersuchungen im nordfriesischen Wattenmeer und auf den fiskalischen Austernbänken. — Wiss. Meeresunters. (Abt. Helgoland)16, 1–90.

    Google Scholar 

  • Hunt, J. H., Ambrose, W. G. & Peterson, C. H., 1987. Effects of the gastropod,Ilyanassa obsoleta (Say), and the bivalve,Mercenaria mercenaria (L.), on larval settlement and juvenile recruitment of infauna. — J. exp. mar. Biol. Ecol.108, 229–240.

    Article  Google Scholar 

  • Hurlbert, S. H., 1971. The non-concept of species diversity: a critique and alternative parameters. —Ecology52, 577–586.

    Google Scholar 

  • Hüttel, M., 1984. Zur Ökologie aasfressender Wattbewohner. Untersuchungen anCarcinus maenas undAnaitides maculata. Dipl.-Arb., Univ. Kiel, 82 pp.

  • Kaspar, M. F., Gillespie, P. A., Boyer, I. C. & Mackenzie, M., 1985. Effects of mussel aquaculture on the nitrogen cycle and benthic communities in Kenepuru Sound, Marborough Sounds, New Zealand. — Mar. Biol.85, 127–136.

    Article  CAS  Google Scholar 

  • Kosfeld, C., 1989. Mikrobieller Abbau von Faeces der Miesmuschel (Mytilus edulis L.). Diss., Univ. Kiel, 131 pp.

  • Larsen, P. F., 1985. The benthic macrofauna associated with the oyster reefs of the james River Estuary, Virginia, USA. — Int. Revue ges. Hydrobiol.70, 797–814.

    Google Scholar 

  • Margalef, R., 1958. Information theory in ecology. — Gen. Syst.3, 36–71.

    Google Scholar 

  • Mattson, J. & Linden, O., 1983. Benthic macrofauna succession under mussels,Mytilus edulis L. (Bivalvia) cultured on hanging long-lines. — Sarsia68, 97–102.

    Google Scholar 

  • Mileikovsky, S. A., 1974. On predation of pelagic larvae and early juveniles of marine bottom invertebrates by adult benthic invertebrates and their passing alive through their predators. —Mar. Biol.26, 303–311.

    Article  Google Scholar 

  • Pearson, T. H. & Rosenberg, R., 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. — Oceanogr. mar. Biol.16, 229–311.

    Google Scholar 

  • Pielou, E. C., 1966. The measurement of diversity in different types of biological collections. —J. theor. Biol.13, 131–144.

    Article  Google Scholar 

  • Posey, M. H., 1986. Changes in the benthic community associated with dense beds of a burrowing deposit-feederCallianassa californiensis. — Mar. Ecol. Prog. Ser.,31, 15–22.

    Google Scholar 

  • Reise, K., 1981. High abundance of small zoobenthos around biogenic structures in tidal sediments of the Wadden Sea. — Helgoländer Meeresunters.34, 413–425.

    Article  Google Scholar 

  • Reise, K., 1983. Biotic enrichment of intertidal sediments by experimental aggregates of the deposit-feeding bivalveMacoma balthica. — Mar. Ecol. Prog. Ser.12, 229–236.

    Google Scholar 

  • Reise, K., 1984. Free-living Plathelminthes (Turbellaria) of a marine sand flat: an ecological study. —Microfauna mar.1, 1–62.

    Google Scholar 

  • Reise, K., 1985. Tidal flat ecology. Springer, Berlin, 191 pp.

    Google Scholar 

  • Renkonen, O., 1938. Statistisch-ökologische Untersuchungen über die terrestrische Käferwelt der finnischen Bruchmoore. — Annls zool. Soc. zool.-bot. fenn.6, 1–231.

    Google Scholar 

  • Rhoads, D. C. & Young, D. K., 1970. The influence of deposit-feeding organisms on sediment stability and community trophic structure. — J. mar. Res.28, 150–178.

    Google Scholar 

  • Riesen, W. & Reise, K., 1982. Macrobenthos of the subtidal Wadden Sea: revisited after 55 years. —Helgoländer Meeresunters.35, 409–423.

    Article  Google Scholar 

  • Roman, G. & Perez, A., 1982. Estudio del mejillon y de su epifauna en los cultivos flotantes de los Rio de Arosa. IV. Evolucion de la communidad. — Boln Inst. esp. Oceanogr.7, 279–296.

    Google Scholar 

  • Rosenberg, R. & Loo, L.-O., 1983. Energy-flow in aMytilus edulis culture in western Sweden. —Aquaculture35, 151–161.

    Article  Google Scholar 

  • Sachs, L., 1984. Angewandte Statistik. Springer, Berlin, 552 pp.

    Google Scholar 

  • Scheltema, R. S., 1974. Biological interactions determining larval settlement of marine invertebrates. — Thalassia jugosl.10, 263–296.

    Google Scholar 

  • Scherer, B. & Reise, K., 1981. Significant predation on micro- and macrobenthos by the crabCarcinus maenas L. in the Wadden Sea. — Kieler Meeresforsch. (Sonderh.)5, 490–500.

    Google Scholar 

  • Sørensen, T. A., 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content, and its application to analyses of the vegetation on Danish commons. — Biol. Skr.5, 1–34.

    Google Scholar 

  • Suchanek, T. H., 1980. Diversity in natural and artificial mussel bed communities ofMytilus californianus. — Am. Zool.20, 807.

    Google Scholar 

  • Tenore, K. R. & Gonzales, N., 1976. Food chain patterns in the Ria de Arosa, Spain: an area of intense mussel aquaculture. In: Proceedings of the 10th European symposium on marine biology. Ed. by G. Persoone & E. Jaspers. Wetteren, Universa Press,2, 601–619.

    Google Scholar 

  • Thrush, S. F., 1988. The comparison of marobenthic recolonization patterns near and away from crab burrows on a sublittoral sandflat. — J. mar. Res.46, 669–681.

    Google Scholar 

  • Tsuchiya, M. & Nishihira, M., 1985. Islands ofMytilus as a habitat for small intertidal animals: effect of island size on community structure. — Mar. Ecol. Prog. Ser.25, 71–81.

    Google Scholar 

  • Tsuchiya, M. & Nishihira, M., 1985. Islands ofMytilus as a habitat for small intertidal animals: effect ofMytilus age structure on the species composition of the associated fauna and community organization. — Mar. Ecol. Prog. Ser.31, 171–178.

    Google Scholar 

  • Verwey, J., 1952. On the ecology and distribution of cockle and mussel in the Dutch Wadden Sea, their role in sedimentation and the source of their food supply. — Archs neerl. Zool.10, 171–239.

    Google Scholar 

  • Wohlenberg, E., 1937. Die Wattenmeer-Lebensgemeinschaft im Königshafen von Sylt. — Helgoländer wiss. Meeresunters.1, 1–92.

    Article  Google Scholar 

  • Woodin, S. A., 1976. Adult-larval interactions in dense infaunal assemblages: patterns of abundance. — J. mar. Res.34, 25–41.

    Google Scholar 

  • Ziegelmeier, E., 1964. Einwirkungen des kalten Winters 1962/63 auf das Makrobenthos im Ostteil der Deutschen Bucht. — Helgoländer wiss. Meeresunters.10, 276–282.

    Article  Google Scholar 

  • Ziegelmeier, E., 1970. Über Massenvorkommen verschiedener makrobenthaler Wirbelloser während der Wiederbesiedlungsphase nach Schädigung durch “katastrophale” Umwelteinflüsse. —Helgoländer wiss. Meeresunters.21, 9–20.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dittmann, S. Mussel beds — amensalism or amelioration for intertidal fauna?. Helgolander Meeresunters 44, 335–352 (1990). https://doi.org/10.1007/BF02365471

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02365471

Keywords