Skip to main content
  • Published:

Macroalgal decomposition: Laboratory studies with particular regard to microorganisms and meiofauna

Abstract

The microbial degradation of North Sea macroalgae was studied in laboratory microcosms, containing autoclaved seawater and a mixture of equal parts of air-driedDelesseria sanguinea, Ulva lactuca, andLaminaria saccharina (red, green and brown algae, respectively). To determine the influence of different organisms on the decomposition rate (expressed in terms of algal dry weight loss relative to the material present at time zero) and their development during decomposition processes, yeast, flagellates, ciliates, nematodes and a harpacticoid copepod species were introduced to the microcosms. Results show that microbial degradation compared to the controls was enhanced in the presence of non-axenic nematodes (Monhystera sp.) and protozoans, including bacterivorous ciliates (Euplotes sp. and aUronema-like sp.) and flagellates. No enhancement occurred with yeast (Debaryomyces hansenii) or with the harpacticoid copepodTisbe holothuriae. The most rapid algal dry weight loss (78.7% after 14 d at 18°C) occurred with the addition of raw seawater sampled near benthic algal vegetation and containing only the natural microorganisms present. These consisted mainly of bacteria with different morphological properties, whereby their numbers alone (viable counts) could not be correlated with algal dry weight loss. Although no single dominant species could be determined, lemon yellow pigmented colonies were frequently found. During decomposition in all microcosms the formation of algal particles 40–400 μm was observed, which were rapidly colonized by the other organisms present.

Literature Cited

  • Armonies, W., 1989. Occurrence of meiofauna inPhaeocystis seafoam. — Mar. Ecol. Prog. Ser.53, 305–309.

    Google Scholar 

  • Barsdate, R. J., Prentki, R. T. & Fenchel, T., 1974. Phosphorus cycle of model ecosystems: significance for decomposer food chains and effect of bacterial grazers. — Oikos25, 239–251.

    CAS  Google Scholar 

  • Bick, H., 1967. Vergleichende Untersuchungen der Ciliatensukzession beim Abbau von Pepton und Cellulose (Modellversuche). — Hydrobiologia30, 353–373.

    Article  Google Scholar 

  • Biddanda, B. A., 1985. Microbial synthesis of macroparticulate matter. — Mar. Ecol. Prog. Ser.20, 241–251.

    Google Scholar 

  • Bolinches, J., Lemos, M. L. & Barja, J. L., 1988. Population dynamics of heterotrophic bacterial communities associated withFucus vesiculosus andUlvarigida in an estuary. — Microb. Ecol.15, 345–357.

    Article  Google Scholar 

  • Bouvy, M., Le Romancer, M. & Delille, D., 1986. Significance of microheterotrophs in relation to the degradation process of subantarctic kelp beds (Macrocystis pyrifera). — Polar Biol.5, 249–253.

    Article  Google Scholar 

  • Briggs, K. B., Tenore, K. R. & Hanson, R. B., 1979. The role of microfauna in detrital utilization by the polychaete,Nereis succinea (Frey and Leuckart). — J. exp. mar. Biol. Ecol.36, 225–234.

    Article  Google Scholar 

  • Chan, E. C. S. & McManus, E. A., 1969. Distribution, characterization, and nutrition of marine microorganisms from the algaePolysiphonia lanosa andAscophyllum nodosum. — Can. J. Microbiol.15, 409–420.

    CAS  PubMed  Google Scholar 

  • Corre, S., Prieur, D., Chamroux, S., Floch, J.-Y. & Hourmant, A., 1989. Caractérisation des communautés bactériennes épiphytes de frondes deLaminaria digitata et de débris résultant de leur fragmentation. — Cah. Biol. mar.30, 115–130.

    Google Scholar 

  • Coull, B. C., 1988. Ecology of the marine meiofauna. In: Introduction to the study of meiofauna. Ed. by R. P. Higgins & H. Thiel. Smithsonian Institution Press, Washington, D. C., 18–38.

    Google Scholar 

  • Cundell, A. M., Sleeter, T. D. & Mitchell, R., 1977. Microbial populations associated with the surface of the brown algaAscophyllum nodosum. — Microb. Ecol.4, 81–91.

    Article  Google Scholar 

  • Fenchel, T., 1970. Studies on the decomposition of organic detritus derived from the turtle grassThalassia testudinum. — Limnol. Oceanogr.15, 14–20.

    Google Scholar 

  • Fenchel, T. & Harrison, P., 1976. The significance of bacterial grazing and mineral cycling for the decomposition of particulate detritus. In: The role of terrestrial and aquatic organisms in decomposition processes. Ed. by J. M. Anderson & A. Macfayden, Blackwell, Oxford, 285–299.

    Google Scholar 

  • Fenchel, T. M. & Jørgensen, B. B., 1977. Detritus food chains of aquatic ecosystems: the role of bacteria. In: Advances in microbial ecology. Ed. by M. Alexander. Plenum Press, New York,1, 1–58.

    Google Scholar 

  • Findlay, S. & Tenore, K. R., 1982. Effect of a free-living marine nematode (Diplolaimella chitwoodi) on detrital carbon mineralization. — Mar. Ecol. Prog. Ser.8, 161–166.

    Google Scholar 

  • Griffiths, C. L. & Stenton-Dozey, J., 1981. The fauna and rate of degradation of stranded kelp. —Estuar. coast. Shelf Sci.12, 645–653.

    Google Scholar 

  • Gunkel, W., Crow, S. & Klings, K.-W., 1983. Yeast population increases during degradation ofDesmarestia viridis (Phaeophyceae) in seawater model microecosystems. — Mar. Biol.75, 327–332.

    Article  Google Scholar 

  • Harrison, P. G. & Mann, K. H., 1975. Detritus formation from eelgrass (Zostera marina L.): The relative effects of fragmentation, leaching, and decay. — Limnol. Oceanogr.20, 924–934.

    CAS  Google Scholar 

  • Heip, C., Vincx, M. & Vranken, G., 1985. The ecology of marine nematodes. — Oceanogr. mar. Biol.23, 399–489.

    Google Scholar 

  • Hicks, G. R. F. & Coull, B. C., 1983. The ecology of marine meiobenthic harpacticoid copepods. —Oceanogr. mar. Biol.21, 67–175.

    Google Scholar 

  • Higgins, R. P. & Thiel, H., 1988. Prospectus. In: Introduction to the study of meiofauna. Ed. by R. P. Higgins & H. Thiel. Smithsonian Institution Press, Washington, D. C., 11–13.

    Google Scholar 

  • Hollohan, B. T., Dabinett, P. E. & Gow, J. A., 1986. Bacterial succession during biodegradation of the kelpAlaria esculenta (L.) Greville. — Can. J. Microbiol.32, 505–512.

    Google Scholar 

  • Huang, T.-C., Chang, M.-C. & Alexander, M., 1981. Effect of Protozoa on bacterial degradation of an aromatic compound. — Appl. environ. Microbiol.41, 229–232.

    CAS  PubMed  Google Scholar 

  • Inglis, G., 1989. The colonisation and degradation of strandedMacrocystic pyrifera (L.) C. Ag. by the macrofauna of a New Zealand sandy beach. — J. exp. mar. Biol. Ecol.125, 203–217.

    Article  Google Scholar 

  • Javornický, P. & ProkeÅ¡ová, V., 1963. The influence of Protozoa and bacteria upon the oxidation of organic substances in water. — Int. Revue ges. Hydrobiol.48, 335–350.

    Google Scholar 

  • Johannes, R. E., 1965. Influence of marine Protozoa on nutrient regeneration. — Limnol. Oceanogr.10, 434–442.

    Google Scholar 

  • Koop, K., Newell, R. C. & Lucas, M. I., 1982a. Biodegradation and carbon flow based on kelp (Ecklonia maxima) debris in a sandy beach microcosm. — Mar. Ecol. Prog. Ser.7, 315–326.

    Google Scholar 

  • Koop, K., Newell, R. C. & Lucas, M. I., 1982b. Microbial regeneration of nutrients from the decomposition of macrophyte debris on the shore. — Mar. Ecol. Prog. Ser.9, 91–96.

    CAS  Google Scholar 

  • Laycock, R. A., 1974. The detrital food chain based on seaweeds. I. Bacteria associated with the surface ofLaminaria fronds. — Mar. Biol.25, 223–231.

    Article  Google Scholar 

  • Legner, M., 1973. Experimental approach to the role of Protozoa in aquatic ecosystems. — Am. Zool.13, 177–192.

    Google Scholar 

  • Linley, E. A. S., Newell, R. C. & Bosma, S. A., 1981. Heterotrophic utilisation of mucilage released during fragmentation of kelp (Ecklonia maxima andLaminaria pallida). I. Development of microbial communities associated with the degradation of kelp mucilage. — Mar. Ecol. Prog. Ser.4, 31–41.

    Google Scholar 

  • Lorenzen, S., Prein, M. & Valentin, C., 1987. Mass aggregations of the free-living marine nematodePontonema vulgare (Oncholaimidae) in organically polluted fjords. — Mar. Ecol. Prog. Ser.37, 27–34.

    Google Scholar 

  • Lucas, M. I., Newell, R. C. & Velimirov, B., 1981. Heterotrophic utilisation of mucilage released during fragmentation of kelp (Ecklonia maxima andLaminaria pallida). II. Differential utilisation of dissolved organic components from kelp mucilage. — Mar. Ecol. Prog. Ser.4, 43–55.

    CAS  Google Scholar 

  • Lüning, K., 1985. Meeresbotanik. Thieme, Stuttgart, 375 pp.

    Google Scholar 

  • Lush, D. L. & Hynes, H. B. N., 1973. The formation of particles in freshwater leachates of dead leaves. — Limnol. Oceanogr.18, 968–977.

    CAS  Google Scholar 

  • Mann, K. H., 1972. Macrophyte production and detritus food chains in coastal waters. — Mem. Ist. ital. Idrobiol.29 (Suppl.), 353–383.

    Google Scholar 

  • Meyer, H. A. & Bell, S. S., 1989. Response of harpacticoid copepods to detrital accumulation on seagrass blades: a field experiment withMetis holothuriae (Edwards). — J. exp. mar. Biol. Ecol.132, 141–149.

    Article  Google Scholar 

  • Meyers, S. P., Ahearn, D. G., Gunkel, W. & Roth, F. J., 1967. Yeasts from the North Sea. — Mar. Biol.1, 118–123.

    Article  Google Scholar 

  • Muschenheim, D. K., Kepkay, P. E. & Kranck, K., 1989. Microbial growth in turbulent suspension and its relation to marine aggregate formation. — Neth. J. Sea Res.23, 283–292.

    Google Scholar 

  • Reichardt, W., 1978. Einführung in die Methoden der Gewässermikrobiologie. Fischer, Stuttgart, 250 pp.

    Google Scholar 

  • Rheinheimer, G., 1981. Mikrobiologie der Gewässer, Fischer, Stuttgart, 251 pp.

    Google Scholar 

  • Rheinheimer, G., 1984. Bacterial ecology of the North and Baltic Seas. — Botanica mar.27, 277–299.

    CAS  Google Scholar 

  • Riemann, F., 1968. Nematoden aus dem Strandanwurf. — Veröff. Inst. Meeresforsch. Bremerhaven11, 25–35.

    Google Scholar 

  • Rieper, M., 1978. Bacteria as food for marine harpacticoid copepods. — Mar. Biol.45, 337–345.

    Article  Google Scholar 

  • Rieper, M., 1982. Feeding preferences of marine harpacticoid copepods for various species of bacteria. — Mar. Ecol. Prog. Ser.7, 303–307.

    Google Scholar 

  • Rieper-Kirchner, M., 1989. Microbial degradation of North Sea macroalgae: field and laboratory studies. — Botanica mar.32, 241–252.

    Google Scholar 

  • Robertson, A. I. & Hansen, J. A., 1982. Decomposing seaweed: a nuisance or a vital link in coastal food chains? — Res. Rep. Div. Fish. C. S. I. R. O.1980–1981, 75–83.

    Google Scholar 

  • Robertson, M. L., Mills, A. L. & Zieman J. C. 1982. Microbial synthesis of detritus-like particulates from dissolved organic carbon released by tropical seagrasses. — Mar. Ecol. Prog. Ser.7, 279–285.

    Google Scholar 

  • Rogerson, A. & Berger, J., 1983. Enhancement of the microbial degradation of crude oil by the ciliateColpidium colpoda. — J. gen. appl. Microbiol.29, 41–50.

    CAS  Google Scholar 

  • Sherr, B. F., Sherr, E. B. & Berman, T., 1982. Decomposition of organic detritus: a selective role for microflagellate Protozoa. — Limnol. Oceanogr.27, 765–769.

    CAS  Google Scholar 

  • Stenson, J. A. E., 1984. Interactions between pelagic metazoan and protozoan zooplankton, an experimental study. — Hydrobiologia111, 107–112.

    Article  Google Scholar 

  • StraÅ¡krabová-ProkeÅ¡ová, V. & Legner, M., 1966. Interrelations between bacteria and Protozoa during glucose oxidation in water. — Int. Revue ges. Hydrobiol.51 279–293.

    Google Scholar 

  • Taylor, G. T., Iturriaga, R. & Sullivan, C. W., 1985. Interactions of bactivorous grazers and heterotrophic bacteria with dissolved organic matter. — Mar. Ecol. Prog. Ser.23, 129–141.

    Google Scholar 

  • Tenore, K. R., Tietjen, J. H. & Lee, J. J., 1977. Effect of meiofauna on incorporation of aged eelgrass,Zostera marina, detritus by the polychaeteNephthys incisa — J. Fish. Res. Bd Can.34, 563–567.

    Google Scholar 

  • Wolter, K. & Rheinheimer, G., 1977. Bakteriologische Untersuchungen an in der Brandungszone angetriebenem Algenmaterial. — Botanica mar.20, 171–181.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rieper-Kirchner, M. Macroalgal decomposition: Laboratory studies with particular regard to microorganisms and meiofauna. Helgolander Meeresunters 44, 397–410 (1990). https://doi.org/10.1007/BF02365476

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02365476

Keywords