Skip to main content
  • Published:

Interactions in soft bottom benthic communities: Quantitative aspects of behaviour in the surface deposit feedersPygospio elegans (Polychaeta) andMacoma balthica (Bivalvia)

Abstract

The surface deposit feeding speciesPygospio elegans andMacoma balthica are dominant members of many sandy bottom communities of northern boreal regions. The feeding mode of both species and the tube-building ofP. elegans are assumed to affect community structure by interactions with other species. The weight of tubes ofP. elegans varied between 2 and 13 g DW/100 cm2 at the two stations investigated and during the year, which is equivalent to 230–1500 cm of tubes per 100 cm2 of sediment surface. Sediment stability may be affected directly or indirectly by the amount of tubes present.M. balthica shows a linear relation between the maximum size of particles which can be inhaled and animal length. In Kiel Bay, particles>0.5 mm are out of the range of this species. In summer, the potential feeding area (PFA) of aP. elegans population at one station in Kiel Bay was 1.8 times the available surface area. The PFA of three different populations ofM. balthica in Kiel Bay exceeded the available surface area by factors of 2.6, 2.7, and 3.2. These findings indicate strong intra- and interspecific competition for food. Additionally, the feeding of both species may strongly affect the recruitment of benthic species via pelagic larvae. Experiments are proposed to evaluate the significance of the investigated behavioural aspects for community structure.

Literature Cited

  • Aller, J. Y. & Aller, R. C., 1986. Evidence for localized enhancement of biological activity associated with tube and burrow structures in deep-sea sediments at the HEBBLE site, western North Atlantic.—Deep-Sea Res.33, 755–790.

    Article  CAS  Google Scholar 

  • Aller, R. C., 1980. Relationship of tube-dwelling benthos with sediment and overlying water chemistry. In: Marine benthic dynamics. Ed. by K. R. Tenore & B. C. Coull. Univ. of South Carolina Press, Columbia, 285–308.

    Google Scholar 

  • Aller, R. C., 1983. The importance of the diffusive permeability of animal burrow linings in determining marine sediment chemistry.—J. mar. Res.41, 299–322.

    CAS  Google Scholar 

  • Bell, S. S. & Coull, B. C., 1980. Experimental evidence for a model of juvenile macrofauna-meiofauna interactions. In: Marine benthic dynamics. Ed. by K. R. Tenore & B. C. Coull, Univ. of South Carolina Press, Columbia, 179–192.

    Google Scholar 

  • Black, R. & Peterson, C. H., 1988. Absence of preemption and interference competition for space between large suspension-feeding bivalves and smaller infaunal macroinvertebrates.—J. exp. mar. Biol. Ecol.120, 183–198.

    Article  Google Scholar 

  • Blaricom, G. R. van, 1982. Experimental analysis of structural regulation in a marine sand community exposed to oceanic swell.—Ecology52, 283–305.

    Google Scholar 

  • Boehlich, M. J. & Backhaus, J. O., 1987. Simulation windangeregter Strömungen im System Nordsee-Ostsee zur Interpretation eutrophierungsrelevanter biologisch-chemischer Prozesse in deutschen Küstengewässern. Umweltforschungsplan. Forsch. Ber. Bundesministers für Umwelt, Naturschutz und Reaktorsicherheit102 04 215/18, 1–52.

  • Bonsdorff, E., Mattila, J., Rönn, C. & Österman, C.-S., 1986. Multidimensional interactions in shallow soft-bottom ecosystems; testing the competitive exclusion principle.—Ophelia (Suppl.)4, 37–44.

    Google Scholar 

  • Brey, T., 1986. Formalin and formaldehyde-depot chemicals: effects on dry weight and ash free dry weight of two marine bivalve species.—Meeresforsch.31, 52–57.

    Google Scholar 

  • Brey, T., 1989. Der Einfluß biologischer und physikalischer Faktoren auf Struktur und Dynamik der sublitoralenMacoma-Gemeinschaft der Kieler Bucht.—Ber. Inst. Meeresk. Kiel186, 1–248.

    Google Scholar 

  • Cadee, G. C., 1976. Sediment reworking byArenicola marina on tidal flats in the Dutch Wadden Sea.—Neth. J. Sea Res.10, 440–460.

    Google Scholar 

  • Eckman, J. E., Nowell, A. R. M. & Jumars, P. A., 1981. Sediment destabilization by animal tubes. —J. mar. Res.39, 361–374.

    Google Scholar 

  • Fager, E. W., 1964. Marine sediments: Effects of a tube-building polychaete.—Science, N. Y.,143, 356–359.

    Google Scholar 

  • Fauchald, K. & Jumars, P. A., 1979. The diet of worms: A study of polychaete feeding guilds.—Oceanogr. mar. Biol.17, 193–284.

    Google Scholar 

  • Führböter, A. & Manzenrieder, H., 1987. Biostabilisierung von Sandwatten durch Mikroorganismen. In: Mellum—Portrait einer Insel. Ed. by W. E. Krumbein, H.-E. Reineck & W. Ziegler. Kramer, Frankfurt/M., 123–138.

    Google Scholar 

  • Gallagher, E. D., Jumars, P. A. & Trueblood, D. D., 1983. Facilitation of soft-bottom benthic succession by tube builders.—Ecology64, 1200–1216.

    Google Scholar 

  • Grant, J., Bathmann, U. V. & Mills, E. L., 1986. The interaction between benthic diatom films and sediment transport.—Estuar. coast. Shelf Sci.23, 225–238.

    Article  CAS  Google Scholar 

  • Hines, A. H., Posey, M. H. & Haddon, P. J., 1989. Effects of adult suspension-and deposit-feeding bivalves on recruitment of estuarine infauna.—Veliger32, 109–119.

    Google Scholar 

  • Holland, A. F., Zingmark, R. G. & Dean, J. M., 1974. Quantitative evidence concerning the stabilization of sediments by marine benthic diatoms.—Mar. Biol.27, 191–196.

    Article  Google Scholar 

  • Holme, N. A., 1950. Population-dispersion inTellina tenuis Da Costa.—J. mar. biol. Ass. U.K.29, 267–280.

    Google Scholar 

  • Hunt, J. H., Ambrose, W. G. & Peterson, C. H., 1987. Effects of the gastropod,Ilyanassa obsoleta (Say), and the bivalve,Mercenaria mercenaria (L.), on larval settlement and juvenile recruitment of infauna.—J. exp. mar. Biol. Ecol.108, 229–240.

    Article  Google Scholar 

  • Hylleberg, J. & Gallucci, V. F. 1975. Selectivity in feeding by the deposit-feeding bivalveMacoma nasuta.—Mar. Biol.32, 167–178.

    Article  Google Scholar 

  • Levin, L. A., 1981. Dispersion, feeding behaviour and cometition in two spionid polychaetes.—J. mar. Res.39, 99–117.

    Google Scholar 

  • Luckenbach, M. W., 1987. Effects of adult infauna on new recruits: Implications for the role of biogenic refuges.—J. exp. mar. Biol. Ecol.105, 197–206.

    Article  Google Scholar 

  • Mileikovsky, S. A., 1974. On predation of pelagic larvae and early juveniles of marine bottom invertebrates by adult benthic invertebrates and their passing alive through their predators.—Mar. Biol.26, 303–311.

    Article  Google Scholar 

  • Muus, K., 1973. Settling, growth and mortality of young bivalves in the Oresund.—Ophelia12, 79–116.

    Google Scholar 

  • Neumann, A. C. & Scoffin, T. P., 1970. The composition, structure and erodability of subtidal mats, Abaco, Bahamas.—J. sedim. Petrol.40, 274–297.

    Google Scholar 

  • Olafsson, E. B., 1989. Contrasting influences of suspension-feeding and deposit-feeding populations ofMacoma balthica on infaunal recruitment.—Mar. Ecol. Prog. Ser.55, 171–179.

    Google Scholar 

  • Peterson, C. H., 1979. Predation, competitive exclusion, and diversity in the soft-sediment benthic communities of estuaries and lagoons. In: Ecological processes in coastal and marine systems. Ed. by R. J. Livingston. Plenum Press, N. Y., 233–264.

    Google Scholar 

  • Poxton, M. G., Eleftheriou, A. & McIntyre, A. D., 1983. The food and growth of 0-group flatfish on nursery grounds in the Clyde Sea area.—Estuar. coast. Shelf Sci.17, 319–337.

    Google Scholar 

  • Rasmussen, E., 1973. Systematics and ecology of the Isefjord marine fauna (Denmark).—Ophelia11, 1–507.

    Google Scholar 

  • Reichardt, W. T., 1986. Polychaete tube walls as zonated microhabitats for marine bacteria.—Actes des Colloques GERBAM3, 415–425.

    Google Scholar 

  • Reise, K., 1981. High abundance of small zoobenthos around biogenic structures in tidal sediments of the Wadden Sea.—Helgoländer Meeresunters.34, 413–425.

    Article  Google Scholar 

  • Reise, K., 1983. Experimental removal of lugworms from marine sand affects small zoobenthos.—Mar. Biol.74, 327–332.

    Article  Google Scholar 

  • Rhoads, D. C., Yingst, J. Y. & Ullman, W. J., 1978. Seafloor stability in central Long Island Sound: Part I. Temporal changes in erodibility of fine-grained sediment. In: Estuarine interactions. Ed. by M. L. Wiley, Acad. Press, New York, 221–244.

    Google Scholar 

  • Sanders, H. L., Goudsmit, E. M., Mills, E. L. & Hampson, G. E., 1962. A study of the intertidal fauna of Barnstable Harbor, Massachusetts.—Limnol. Oceanogr.7, 63–79.

    Google Scholar 

  • Schweimer, M., 1976. Erosionshäufigkeit in der westlichen Ostsee als Folge des Seegangs.—Rep. Univ. Kiel (SFB95)21, 1–59.

    Google Scholar 

  • Self, R. F. L. & Jumars, P. A., 1988. Cross-phyletic patterns of particle selection by deposit feeders.—J. mar. Res.46, 119–143.

    Google Scholar 

  • Struve-Blanck, S., 1982. Die Strömungen in der Kieler Bucht.—Ber. Inst. Meeresk. Kiel102, 1–112.

    Google Scholar 

  • Taghon, G. L., Nowell, A. R. M. & Jumars, P. A., 1980. Induction of suspension feeding in spionid polychaetes by high particulate fluxes.—Science, N. Y.210, 562–564.

    Google Scholar 

  • Tamaki, A., 1985. Inhibition of larval recruitment ofArmandia sp. (Polychaeta: Ophelidae) by established adults ofPseudopolydora paucibranchiata (Okuda) (Polychaeta: Spionidae) on an intertidal sand flat.—J. exp. mar. Biol. Ecol.87, 67–82.

    Article  Google Scholar 

  • Vlas, J. de, 1979. Annual food intake by plaice and flounder in a tidal flat area in the Dutch Wadden Sea, with special reference to consumption of regenerating parts of macrobenthic prey.—Neth. J. Sea Res.13, 117–153.

    Google Scholar 

  • Watzin, M. A., 1985. Interactions among temporary and permanent meiofauna: Observations on the feeding and behaviour of selected taxa.—Oecologia59, 163–166.

    Google Scholar 

  • Weinberg, J. R., 1984. Interactions between functional groups in soft-substrata: Do species differences matter?—J. exp. mar. Biol. Ecol.80, 11–28.

    Article  Google Scholar 

  • Whitlatch, R. B. & Zajac, R. N., 1985. Biotic interactions among estuarine infaunal opportunistic species.—Mar. Ecol. Prog. Ser.21, 299–311.

    Google Scholar 

  • Wilson, W. H., 1981. Sediment-mediated interactions in a densely populated infaunal assemblage: The effects of the polychaeteAbarenicola pacifica.—J. mar. Res.39, 735–748.

    Google Scholar 

  • Wilson, W. H., 1983a. Food limitation of asexual reproduction in a spionid polychaete.—Int. J. Invertebr. Reprod. Dev.8, 61–65.

    Google Scholar 

  • Wilson, W. H., 1983b. The role of density dependence in a marine infaunal community.—Ecology64, 295–306.

    Google Scholar 

  • Woodin, S. A., 1981. Disturbance and community structure in a shallow water sand flat.—Ecology62, 1052–1066.

    Google Scholar 

  • Woodin, S. A., 1984. Effects of browsing predators: Activity changes in infauna following tissue loss.—Biol. Bull. mar. biol. Lab., Woods Hole166, 558–573.

    Google Scholar 

  • Zajak, R. N., 1986. The effects of intra-specific density and food supply on growth and reproduction in an infaunal polychaete,Polydora ligni Webster.—J. mar. Res.44, 339–359.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

AWI Publication No. 393

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brey, T. Interactions in soft bottom benthic communities: Quantitative aspects of behaviour in the surface deposit feedersPygospio elegans (Polychaeta) andMacoma balthica (Bivalvia). Helgolander Meeresunters 45, 301–316 (1991). https://doi.org/10.1007/BF02365522

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02365522

Keywords