Skip to main content
  • Published:

The effect of salinity on growth, photosynthesis and respiration in the estuarine red algaBostrychia radicans mont

Abstract

The estuarine red alga,Bostrychia radicans, was subjected to osmotic stresses ranging from hypo-osmotic (9.9‰) to hyperosmotic conditions (37.4‰). The growth rate decreased with increasing salinities and showed a maximum in a mesohaline medium, while the photosynthetic rate and the chlorophyll a content increased under hyper-osmotic conditions. The rate of respiration remained constant over the salinity range tested.B. radicans revealed typical characteristics of “shade plants” having a low light compensation point at 3–4 μE m−2 s−1 correlated with a low photon flux density of 70–100 μE m−2 s−1 for saturation of photosynthesis. These physiological properties may explain the success ofB. radicans in estuarine habitats.

Literature cited

  • Al-Hassan, R. H., Ghannoum, M. A., Sallal, A. K., Abu-Elten, K. H. & Radwan, S. S., 1987. Correlative changes of growth and lipid composition ofDunaliella salina in response to halostress. — J. gen. Microbiol.133, 2607–2616.

    Google Scholar 

  • Dawes, C. J., Moon, R. E. & Davis, M. A., 1978. The photosynthetic and respiratory rates and tolerances of benthic algae from a mangrove and salt marsh estuary: a comparative study. —Estuar. coast. mar. Sci.6, 175–185.

    Article  Google Scholar 

  • Dawes, C. J. & McIntosh, R. P., 1981. The effect of organic material and inorganic ions on the photosynthetic rate of the red algaBostrychia binderi from a Florida estuary. — Mar. Biol.64, 213–218.

    Article  CAS  Google Scholar 

  • Gessner, F. & Schramm, W., 1971. Salinity. In: Marine ecology. Ed. by O. Kinne, Wiley Interscience, New York,1 (2), 705–820.

    Google Scholar 

  • Inskeep, W. P. & Bloom, P. R., 1985. Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80% acetone. — Pl. Physiol.77, 483–485.

    CAS  Google Scholar 

  • Kirst, G. O., 1981. Photosynthesis and respiration ofGriffithsia monilis (Rhodophyceae): effect of light, salinity, and oxygen. — Planta151, 281–288.

    Article  CAS  Google Scholar 

  • Kirst, G. O. & Wichmann, F., 1987. Adaptation of the euryhaline CharophyteLamprothamnium papulosum to brackish and freshwater: photosynthesis and respiration. — J. Pl. Physiol.131, 413–422.

    CAS  Google Scholar 

  • Knox, G. A., 1986. Estuarine ecosystems: A systems approach. CRC Press, Boca Raton, Fl,1, 1–36.

    Google Scholar 

  • Larkum, A. W. D. & Weyrauch, S. K., 1977. Photosynthetic action spectra and light-harvesting inGriffithsia monilis (Rhodophyta). — Photochem. Photobiol.25, 65–72.

    CAS  Google Scholar 

  • Lüning, K., 1985. Meeresbotanik: Verbreitung, Ökophysiologie und Nutzung der marinen Makroalgen. Thieme, Stuttgart, 383 pp.

    Google Scholar 

  • Ogata, E. & Matsui, T., 1965 a. Photosynthesis in several marine plants of Japan in relation to carbon dioxide supply, light and inhibitors. — Jap. J. Bot.19, 83–98.

    Google Scholar 

  • Ogata, E. & Matsui, T., 1965b. Photosynthesis in several marine plants of Japan as affected by salinity, drying and pH, with attention to their growth habitats. — Botanica mar.8, 199–217.

    CAS  Google Scholar 

  • Ogata, E. & Takada, H., 1968. Studies on the relationship between the respiration and the changes in salinity in some marine plants in Japan. — J. Shimonoseki Coll. Fish.16, 67–88.

    Google Scholar 

  • Post, E., 1963a. Zur Verbreitung und Ökologie derBostrychia-Caloglossa-Assoziation. — Int. Revue ges. Hydrobiol.48, 47–152.

    Google Scholar 

  • Post, E., 1963b.Bostrychia — nicht tot zu kriegen. — Botanica mar.5, 9–18.

    Google Scholar 

  • Raven, J. A., Smith, F. A. & Glidewell, S. M., 1979. Photosynthetic capacities and biological strategies of giant-celled and small-celled macro-algae. — New Phytol.83, 299–309.

    CAS  Google Scholar 

  • Reed, R. H., Collins, J. C. & Russell, G., 1980. The influence of variations in salinity upon photosynthesis in the marine algaPorphyra purpurea (Roth) C. Ag. (Rhodophyta, Bangiales). — Z. PflPhysiol.98, 183–187.

    Google Scholar 

  • Reed, R. H., 1983. The osmotic responses ofPolysiphonia lanosa (L.) Tandy from marine and estuarine sites: evidence for incomplete recovery of turgor. — J. exp. mar. Biol. Ecol.68, 169–170.

    Article  CAS  Google Scholar 

  • Truesdale, G. A., Downing, A. L. & Lowden, G. F., 1955. The solubility of oxygen in pure water and sea-water. — J. appl. Chem.5, 53–62.

    CAS  Google Scholar 

  • Wiencke, C., 1982. Effect of osmotic stress on thylakoid fine structure inPorphyra umbilicalis. —Protoplasma111, 215–220.

    Article  Google Scholar 

  • Wiencke, C. & Davenport, J., 1987. Respiration and photosynthesis in the intertidal algaCladophora rupestris (L.) Kütz. under fluctuating salinity regimes. — J. exp. mar. Biol. Ecol.,114, 183–197.

    Google Scholar 

  • Wilhelm, C., Krämer, P. & Wiedemann, I., 1987. Die Lichtsammelkomplexe der verschiedenen Algenstämme. — Biol. unserer Zeit17, 138–143.

    Article  Google Scholar 

  • Wright, P. J. & Reed, R. H., 1985. The effects of osmotic stress on intracellular hexitols in the marine brown algaHimanthalia elongata (L.) S. F. Gray. — J. exp. mar. Biol. Ecol.93, 183–190.

    Article  CAS  Google Scholar 

  • Yarish, C., Edwards, P. & Casey, S., 1979. A culture study of salinity responses in ecotypes of two estuarine red algae. — J. Phycol.15, 341–346.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karsten, U., Kirst, G.O. The effect of salinity on growth, photosynthesis and respiration in the estuarine red algaBostrychia radicans mont. Helgolander Meeresunters 43, 61–66 (1989). https://doi.org/10.1007/BF02365550

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02365550

Keywords