Skip to main content
  • Published:

Zur chemischen Zusammensetzung der CtenophorePleurobrachia pileus in der Kieler Bucht

Abstract

The chemical composition of the ctenophorePleurobrachia pileus was investigated in March, May and July 1981 in Kiel Bight, western Baltic. The results of all determinations yielded low values compared with other zooplankton groups. Dry weight made up 1.95 to 2.28% wet weight with a minimum occurring in may. Ash-free dry weight amounted to 28–37% of the dry weight but exhibited a maximum in May. Carbon and nitrogen analyses yielded amounts of between 2.6–4.7% of the dry weight and 0.5–1.0% of the dry weight, respectively. Both elements reached lowest levels in May. Proteins reached a minimum in May, too, and values ranged between 2.5 and 5.1% of the dry weight. However, lipids as well as carbohydrates exhibited highest values in May and ranged from 0.8 to 1.6% and 0.8–1.1% of the dry weight, respectively. The CN values increased between March and July from 3.71 to 6.71, indicating a decline in protein content. To relate the biochemical compounds to organic matter I used three different approaches: (1) On the basis of ashfree dry weight, carbohydrates remained constant whereas lipids increased from March to July. A minimum of proteins occurred in May. The three compounds made up only 14–22% of ash-free dry weight. (2) Organic matter approximately equals organic carbon content multiplied by 2. Proteins, lipids and carbohydrates summed up reached 61–100% of this reference value and the seasonal course of these compounds changed in a drastic way: proteins decreased, whereas lipids as well as carbohydrates showed a relative maximum in May. (3) Finally, the carbon content of each biochemical compound was calculated in relation to total carbon content measured via C/N analysis. On this basis, 63–105% of total carbon were recovered, and the course of seasonal changes agreed with that of the second approach. A comparison of these three approaches suggests that comparative calculations based on carbon measurements are more valid than those based on ash-free dry weight. The results show that seasonal changes in the amount of organic matter and the biochemical composition occurred. Dry weight was lowest in May, which could be due to the low salinity environment recorded at that time and the corresponding low salt content of the tissue. The observed relative maxima of lipids and carbohydrates in May may be explained by good food conditions since high zooplankton densities are characteristic for this month in Kiel Bight.

Literatur

  • Barnes, H. & Blackstock, J., 1973. Estimation of lipids in marine animals and tissues: detailed investigation of the sulphosphovanilin method for total lipids. — J. exp. mar. Biol. Ecol.12, 103–118.

    CAS  Google Scholar 

  • Beers, J. R., 1966. Studies on the chemical composition of the major zooplankton groups in the Sargasso Sea off Bermuda. — Limnol. Oceanogr.11, 520–528.

    CAS  Google Scholar 

  • Corner, E. D. S. & Cowey, C. B., 1968. Biochemical studies on the production of marine zooplankton. — Biol. Rev.43, 393–426.

    CAS  PubMed  Google Scholar 

  • Cushing, D. H., Humphrey, G. F., Banse, K. & Laevastu, T., 1958. Report of the committee on terms and equivalents. — Rapp. P.-v. Réun. Cons. int. Explor. Mer144, 15–16.

    Google Scholar 

  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F., 1956. Colorimetric method for determination of sugar and related substances. — Analyt. Chem.28, 350–356.

    CAS  Google Scholar 

  • Folch, J., Lees, M. & Sloane-Stanley, G. H., 1957. A simple method for the isolation and purification of total lipids from animal tissues. — J. biol. Chem.226, 497–509.

    CAS  PubMed  Google Scholar 

  • Gyllenberg, G. & Greve, W., 1979. Studies on oxygen uptake in ctenophores. — Annls zool. fenn.16, 44–49.

    Google Scholar 

  • Handa, N., 1966. Examination of the applicability of the phenolsulfuric acid method to the determination of dissolved carbohydrates in sea water. — J. oceanogr. Soc. Japan22, 79–86.

    Google Scholar 

  • Hirota, R., 1981. Dry weight and chemical composition of the important zooplankton in the Setonaikai (inland sea of Japan). — Bull. Plankt. Soc. Japan28, 19–24.

    Google Scholar 

  • Hoeger, U., 1983. Biochemical composition of ctenophores. — J. exp. mar. Biol. Ecol.72, 251–261.

    Article  CAS  Google Scholar 

  • Ikeda, T., 1974. Nutritional ecology of marine zooplankton. — Mem. Fac. Fish. Hokkaido Univ.22, 1–97.

    Google Scholar 

  • Ikeda, T. & Mitchell, A. W., 1982. Oxygen uptake, ammonia excretion and phosphate excretion by krill and other Antarctic zooplankton in relation to their body size and chemical composition. —Mar. Biol.71, 283–298.

    Article  Google Scholar 

  • Kerstan, M., 1977. Untersuchungen zur Nahrungsökologie vonAurelia aurita Lam. Dipl.-Arb., Univ. Kiel, 95 pp.

  • Kremer, P., 1975. Excretion and body composition of the ctenophoreMnemiopsis leidyi (A. Agassiz): comparisons and consequences. In: 10th European Symposium on Marine Biology. Ed. by G. Persoone & F. Jaspers. Universa Press, Wetteren, n2, 351–362.

    Google Scholar 

  • Kremer, P., 1977. Respiration and excretion by the ctenophoreMnemiopsis leidyi. — Mar. Biol.44, 43–50.

    Article  CAS  Google Scholar 

  • Kremer, P., 1982. Effect of food availability on the metabolism of the ctenophoreMnemiopsis mccradyi. — Mar. Biol.71, 149–156.

    Article  Google Scholar 

  • Kremer, P., Canino, M. F. & Gilmer, R. W., 1986. Metabolism of epipelagic tropical ctenophores. —Mar. Biol.90, 403–412.

    Article  Google Scholar 

  • Larson, R. J., 1986. Water content, organic content, and carbon and nitrogen composition of medusae from the Northeast Pacific. — J. exp. mar. Biol. Ecol.99, 107–120.

    Article  Google Scholar 

  • Lee, R. F., 1974. Lipids of zooplankton from Bute Inlet, British Columbia. — J. Fish. Res. Bd Can.31, 1577–1582.

    CAS  Google Scholar 

  • Lenz, J., 1977. Seston and its main components. In: Microbial ecology of a brackish water environment. Ed. by G. Rheinheimer. Springer, Heidelberg, 39–60.

    Google Scholar 

  • Mayzaud, P. & Martin, J.-L. M., 1975. Some aspects of the biochemical and mineral composition of marine plankton. — J. exp. mar. Biol. Ecol.17, 297–310.

    Article  CAS  Google Scholar 

  • Morris, R. J., McCartney, M. J. & Schulze-Röbbecke, A., 1983.Bolinopsis infundibulum (O. F. Müller): Biochemical composition in relation to diet. — J. exp. mar. Biol. Ecol.67, 149–157.

    Article  CAS  Google Scholar 

  • Möller, H., 1978. Significance of coelenterates in relation to other plankton organisms. — Meeresforsch.27, 1–18.

    Google Scholar 

  • Mullin, M. M. & Evans, P. M., 1974. The use of a deep tank in plankton ecology. 2. Efficiency of a planktonic food chain. — Limnol. Oceanogr.19, 902–911.

    Google Scholar 

  • Omori, M., 1969. Weight and chemical composition of some important oceanic zooplankton in the North Pacific Ocean. — Mar. Biol.3, 4–10.

    Article  CAS  Google Scholar 

  • Parsons, T. R., Takahashi, M. & Hargrave, B., 1973. Biological oceanographic processes. Pergamon Press, Oxford, 322 pp.

    Google Scholar 

  • Prosser, A. L., 1973. Comparative animal physiology. Saunders, Philadelphia, 966 pp.

    Google Scholar 

  • Raymont, J. E. G., 1983. Plankton and productivity in the oceans. Pergamon Press, Oxford,2, 1–824.

    Google Scholar 

  • Raymont, J. E. G. & Krishnaswamy, S., 1960. Carbohydrates in some marine planktonic animals. —J. mar. biol. Ass. U.K.39, 239–248.

    CAS  Google Scholar 

  • Raymont, J. E. G., Morris, R. J., Ferguson, C. F. & Raymont, J. K. B., 1975. Variation of the amino acid composition of lipid-free residues of marine animals from the Northeast Atlantic. — J. exp. mar. Biol. Ecol.17, 261–267.

    Article  CAS  Google Scholar 

  • Reeve, M. R., 1980. Comparative experimental studies on the feeding of chaetognaths and ctenophores. — J. Plankt. Res.2, 381–393.

    Google Scholar 

  • Reeve, M. R. & Baker, L. D., 1975. Production of two planktonic carnivores (Chaetognath and Ctenophore) in south Florida inshore waters. — Fish. Bull. U.S.73, 238–248.

    Google Scholar 

  • Reeve, M. R. & Walter, M. A., 1978. Nutritional ecology of ctenophores — a review of recent research. — Adv. mar. Biol.15, 249–287.

    Google Scholar 

  • Reeve, M. R., Walter, M. A. & Ikeda, T., 1978. Laboratory studies of ingestion and food utilization in lobate and tentaculate ctenophores. — Limnol. Oceanogr.23, 740–751.

    Google Scholar 

  • Schneider, G., 1985. Zur ökologischen Rolle der Ohrenqualle (Aurelia aurita Lam.) im Pelagial der Kieler Bucht. Diss. Univ. Kiel, 110 pp.

  • Schneider, G., 1987. Role of advection in the distribution and abundance ofPleurobrachia pileus in Kiel Bight. — Mar. Ecol. Prog. Ser.41, 99–102.

    Google Scholar 

  • Schneider, G., 1988. Chemische Zusammensetzung und Biomasseparameter der OhrenqualleAurelia aurita. — Helgoländer Meeresunters.42, 319–327.

    Google Scholar 

  • Shenker, J., 1985. Carbon content of the neritic scyphomedusaChrysaora fuscescens — J. Plankt. Res.7, 169–173.

    Google Scholar 

  • Smetacek, V., 1985. The annual cycle of Kiel Bight plankton: a long-term analysis. — Estuaries8, 145–157.

    Google Scholar 

  • Zöllner, N. & Kirsch, K., 1962. Über die quantitative Bestimmung von Lipoiden (Mikromethode) mittels der vielen Lipoiden (allen bekannten Plasma-Lipoiden) gemeinsamen Sulpho-Phospho-Vanilin-Reaktion. — Z. ges. exp. Med.135, 545–561.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, G. Zur chemischen Zusammensetzung der CtenophorePleurobrachia pileus in der Kieler Bucht. Helgolander Meeresunters 43, 67–76 (1989). https://doi.org/10.1007/BF02365551

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02365551