Skip to main content
  • Published:

Phytoplankton and nutrients in the Helgoland region

Abstract

During recent decades, phytoplankton stock on the one hand and inorganic nutrients (P and bound N) on the other have increased considerably in the southern North Sea, as demonstrated at a permanent station (since 1962) near the island Helgoland. This correlation between phytoplankton and inorganic P and N need not have anything to do with causality; exceptional algal blooms have been observed and reported in the literature since in the 19th century. Furthermore, these increases (four-fold for phytoplankton and two-fold for nutrients) are in the same range as the fluctuations from year to year under different hydrographical conditions. A detailed investigation carried out in 1981 demonstrated the presence of a slowly growing phytoplankton population. Starting with a considerable stock of flagellates in spring, it reached a peak in cell numbers over a long reproduction period which contrasted with the normal duration of a spring bloom of diatoms. These processes were not related to a limited production by P or N. A considerable concentration of these nutrients was permanently available in the form of inorganic compounds. The total amount of nutrients surpassed by far the portion incorporated in the phytoplankton. This is a consequence of the fact that small organisms have a high metabolic rate. Therefore, the relation between stock and production (daily production ≈stock) is completely different from that known e.g. in agriculture. The nutrients exist during the vegetation period mainly in the form of dissolved organic matter that is accessible to plankton. The great dynamics of this system, including a phase shifting during the year between inorganic P, N, Si, and production, indicates the significance of permanent and fast remineralization. Calculations demonstrate that the natural nutrient content of seawater normally satisfies the demands of phytoplankton present in the North Sea area under study. Only in the more productive coastal region (salinity<30 associated with fresh water run-offs of low nutrient content — an unrealistic assumption in the German Bight) might some limitation be observed. For diatoms, silicate may represent a critical component, but a high dynamic force exists in the presence of small Si concentrations. Therefore, a lack of silicon must not represent any limitation; however, knowledge on the silicon system is insufficient up to now.

Literature Cited

  • ARGE Elbe, 1982. Wassergütedaten der Elbe von Schnackenburg bis zur See 1981. — Wassergütestelle Elbe, Hamburg, 80 pp.

    Google Scholar 

  • Armstrong, F. A. J. & Harvey, H. W., 1950. The cycle of phosphorus in the waters of the English Channel. — J. mar. biol. Ass. U. K.29, 145–162.

    CAS  Google Scholar 

  • Baars, J. W. M., 1981. Autecological investigations on marine diatoms. 2. Generation times of 50 species.—Hydrobiol. Bull.15, 137–151.

    Article  Google Scholar 

  • Bätje, M. & Michaelis, H., 1986.Phaeocystis pouchetii blooms in the East Frisian coastal waters (German Bight, North Sea).—Mar. Biol.93, 21–27.

    Article  Google Scholar 

  • Baur, E., 1902. Ueber zwei denitrificirende Bakterien aus der Ostsee.—Wiss. Meeresunters. (Abt. Kiel)6, 9–21.

    Google Scholar 

  • Bennekom, A. J. van, Gieskes, W. W. C. & Tijssen, S. B., 1975. Eutrophication of Dutch coastal waters.—Proc. R. Soc. Lond. (B)189, 359–374.

    Google Scholar 

  • Birge, E. A. & Juday, C., 1926. Organic content of lake water—Bull. Bur. Fish., Wash.42, 185–205.

    Google Scholar 

  • Braarud, T. & Føyn, B., 1931. Beiträge zur Kenntnis des Stoffwechsels im Meere.—Avh. norske VidenskAkad. Oslo. (Mat.-nat. Kl.)14, 1–24.

    Google Scholar 

  • Brandt, K., 1899. Ueber den Stoffwechsel im Meere.—Wiss. Meeresunters. (Abt. Kiel)4, 213–230.

    Google Scholar 

  • Brandt, K., 1902. Ueber den Stoffwechsel im Meere. 2. Abhandlung.—Wiss. Meeresunters. (Abt. Kiel)6, 23–79.

    Google Scholar 

  • Brandt, K. & Raben, E., 1920. Zur Kenntnis der chemischen Zusammensetzung des Planktons und einiger Bodenorganismen.—Wiss. Meeresunters. (Abt. Kiel)19, 175–210.

    Google Scholar 

  • Butler, E. I., Knox, S. & Liddicoat, M. I., 1979. The relationship between inorganic and organic nutrients in the sea water.—J. mar. biol. Ass. U. K.59, 239–250.

    CAS  Google Scholar 

  • Cadée, G. C., 1986. Increased phytoplankton primary production in the Marsdiep area (Western Dutch Wadden Sea).—Neth. J. Sea Res.20, 285–290.

    Google Scholar 

  • Chapra, S. C. & Robertson, A., 1977. Great Lakes eutrophication: The effect of point source control of total phosphorus.—Science, N. Y.196, 1448–1450.

    CAS  Google Scholar 

  • Cooper, L. H. N., 1933. Chemical constituents of biological importance in the English Channel, November 1930 to January 1932. Part II. Hydrogen ion concentration, excess base, carbon dioxide, and oxygen.—J. mar. biol. Ass. U. K.18, 729–753.

    CAS  Google Scholar 

  • Cooper, L. H. N., 1952. Factors affecting the distribution of silicate in the Northern Atlantic Ocean and the formation of North Atlantic deep water.—J. mar. biol. Ass. U. K.30, 511–526.

    CAS  Google Scholar 

  • Eberlein, K., Leal, M. T., Hammer, K. D. & Hickel, W., 1985. Dissolved organic substances during aPhaeocystis pouchetii bloom in the German Bight (North Sea).—Mar. Biol.89, 311–316.

    Article  CAS  Google Scholar 

  • Elbrächter, M., 1977. On population dynamics in multi-species cultures of diatoms and dinoflagellates. —Helgoländer wiss. Meeresunters.30, 192–200.

    Article  Google Scholar 

  • Fleming, R. H., 1939. Composition of plankton and units for reporting populations and production.—Proc. 6th Pacif. Sci. Congr.3, 535–540.

    CAS  Google Scholar 

  • Flynn, K. J. & Butler, I., 1986. Nitrogen sources for the growth of marine microalgae: role of dissolved free amino acids.—Mar. Ecol. Prog. Ser.34, 281–304.

    CAS  Google Scholar 

  • Fogg, G. E., 1958. Extracellular products of phytoplankton and the estimation of primary production. —Rapp. P.-v. Réun. Cons. int. Explor. Mer144, 56–60.

    Google Scholar 

  • Gassmann, G. & Gillbricht, M., 1982. Correlations between phytoplankton, organic detritus and carbon in North Sea waters during the Fladenground Experiment (FLEX '76).—Helgoländer Meeresunters.35, 253–262.

    Article  CAS  Google Scholar 

  • Gillbricht, M., 1952. Untersuchungen zur Produktionsbiologie des Planktons in der Kieler Bucht II: Die Produktionsgröße.—Kieler Meeresforsch.9, 51–61.

    Google Scholar 

  • Gillbricht, M., 1955. Wucherungen von Phytoplankton in einem abgeschlossenen Hafenbecken.—Helgoländer wiss. Meeresunters.5, 141–168.

    Article  Google Scholar 

  • Gillbricht, M., 1956. Die Hydrographie des Jadebusens und der Innenjade.—Veröff. Inst. Meeresforsch Bremerhaven4, 153–170.

    Google Scholar 

  • Gillbricht, M., 1959. Die Planktonverteilung in der Irminger See im Juni 1955.—Ber. dt. wiss. Kommn Meeresforsch.15, 260–275.

    Google Scholar 

  • Gillbricht, M., 1969. Calculations in marine planktology. Practical and theoretical problems.—Int. Revue ges. Hydrobiol.54, 645–660.

    Google Scholar 

  • Gillbricht, M., 1974. Ein Problem bei der Berechnung von Regressionsgeraden.—Ber. dt. wiss. Kommn Meeresforsch.23, 120–129.

    Google Scholar 

  • Gillbricht, M., 1977. Phytoplankton distribution in the upwelling area off NW Africa.—Helgoländer wiss. Meeresunters.29, 417–438.

    Article  CAS  Google Scholar 

  • Gillbricht, M., 1983. Eine “red tide” in der südlichen Nordsee und ihre Beziehungen zur Umwelt.—Helgoländer Meeresunters.36, 393–426.

    Google Scholar 

  • Goedecke, E., 1956. Über das Verhalten des Oberflächensalzgehaltes in der Deutschen Bucht während der Jahre 1873–1944 in Verbindung mit langjährigen Salzgehaltsreihen der südlichen Nordsee.—Ber. dt. wiss. Kommn Meeresforsch.14, 109–146.

    Google Scholar 

  • Goering, J. J., Nelson, D. M. & Carter, J. A., 1973. Silicid uptake by natural populations of marine phytoplankton.—Deep Sea Res.20, 777–789.

    CAS  Google Scholar 

  • Grasshoff, K., 1976. Methods of seawater analysis. Verl. Chemie, Weinheim, 317 pp.

    Google Scholar 

  • Grill, E. V. & Richards, F. A., 1964. Nutrient regeneration from phytoplankton decomposing in sea water.—J. mar. Res.22, 51–69.

    CAS  Google Scholar 

  • Hagmeier, E., 1961. Plankton-Äquivalente.—Kieler Meeresforsch.17, 32–47.

    CAS  Google Scholar 

  • Hart, T. J., 1934. On the phytoplankton of the South-West Atlantic and the Bellinghausen Sea, 1929–31.—Discovery Rep.8, 1–268.

    Google Scholar 

  • Hart, T. J., 1942. Phytoplankton periodicity in Antarctic surface waters.—Discovery Rep.21, 261–356.

    Google Scholar 

  • Hensen, V., 1887. Über die Bestimmung des Plankton's oder des im Meere treibenden Materials an Pflanzen und Thieren.—Ber. Kommn wiss. Unters. dt. Meere5, 1–107.

    Google Scholar 

  • Hoffmann, C., 1956. Untersuchungen über die Remineralisation des Phosphors im Plankton.—Kieler Meeresforsch.12, 25–36.

    CAS  Google Scholar 

  • Johnston, R. & Jones, P. G. W., 1965. Inorganic nutrients in the North Sea—Ser. Atlas mar. Environ.11, 1–3.

    Google Scholar 

  • Juday, C. & Birge, E. A., 1931. A second report on the phosphorus content of Wisconsin lake waters. —Trans. Wis. Acad. Sci. Arts Lett.26, 353–382.

    Google Scholar 

  • Jørgensen, E. G., 1955a. Variations in silica content of diatoms.—Physiologia Pl.8, 840–845.

    Google Scholar 

  • Jørgensen, E. G., 1955b. Solubility of silica in diatoms.—Physiologia Pl.8, 846–851.

    Google Scholar 

  • Kalle, K., 1937. Nährstoff-Untersuchungen als hydrographisches Hilfsmittel zur Unterscheidung von Wasserkörpern.—Annln Hydrogr. Berlin65, 1–18.

    Google Scholar 

  • Kalle, K., 1953. Der Einfluß des englischen Küstenwassers auf den Chemismus der Wasserkörper in der südlichen Nordsee—Ber. dt. wiss. Kommn Meeresforsch.13, 130–135.

    Google Scholar 

  • Ketchum, B. H., 1947. The biochemical relations between marine organisms and their environment. —Ecol. Monogr.17, 309–315.

    CAS  Google Scholar 

  • Krey, J., 1953. Plankton- und Sestonuntersuchungen in der südwestlichen Nordsee auf der Fahrt der „Gauss” Februar/März 1952.—Ber. dt. wiss. Kommn Meeresforsch.13, 136–153.

    Google Scholar 

  • Lewin, J. C., 1961. The dissolution of silica from diatom walls.—Geochim. Cosmochim. Acta21, 182–198.

    CAS  Google Scholar 

  • Nansen, F., 1902. On hydrometers and the surface tension of liquids.—Scient. Results Norw. N. polar Exped.3 (10), 1–87.

    Google Scholar 

  • Nathanson, A., 1906. Über die Bedeutung vertikaler Wasserbewegungen für die Produktion des Planktons im Meere.—Abh. sächs. Akad. Wiss. (Math.-phys. Kl.)5, 359–441.

    Google Scholar 

  • Nordli, E., 1957. Experimental studies on the ecology of Ceratia.—Oikos8, 200–265.

    Google Scholar 

  • Paasche, E., 1973. Silicon and the ecology of marine plankton diatoms. II. Silicate-uptake kinetics in five diatom species.—Mar. Biol.19, 262–269.

    CAS  Google Scholar 

  • Postma, H., 1966. The cycle of nitrogen in the Wadden sea and adjacent areas.—Neth. J. Sea. Res.3, 186–221.

    Google Scholar 

  • Postma, H., 1973. Transport and budget of organic matter in the North Sea.—In: North Sea science. Ed. by E. D. Goldberg, The MIT Press, Cambridge, Mass., 326–334.

    Google Scholar 

  • Postma, H., & Kalle, K., 1955. Die Entstehung von Trübungszonen im Unterlauf der Flüsse, speziell im Hinblick auf die Verhältnisse in der Unterelbe.—Dt. hydrogr. Z.8, 137–144.

    Article  Google Scholar 

  • Raben, E., 1914. Vierte Mitteilung über quantitative Bestimmungen von Stickstoffverbindungen im Meerwasser und Boden, sowie von gelöster Kieselsäure im Meerwasser.—Wiss. Meeresunters. (Abt. Kiel)16, 207–229.

    Google Scholar 

  • Redfield, A. C., Ketchum, B. H. & Richards, F. A., 1963. The influence of organisms on the composition of sea water.—In: The sea. Ed. by M. N. Hill. Wiley, New York,2, 26–77.

    Google Scholar 

  • Richards, F. A., 1958. Dissolved silicate and related properties of some western North Atlantic and Caribbean waters.—J. mar. Res.17, 449–465.

    CAS  Google Scholar 

  • Sakshaug, E., Andresen, K., Myklestad, S. & Olsen, Y., 1983. Nutrient status of phytoplankton communities in Norwegian waters (marine, brackish, and fresh) as revealed by their chemical composition.—J. Plankt. Res.5, 175–196.

    CAS  Google Scholar 

  • Sakshaug, E. & Olsen, Y., 1986. Nutrient status of phytoplankton blooms in Norwegian waters and algal strategies for nutrient competition—Can. J. Fish. aquat. Sci.43, 389–396.

    CAS  Google Scholar 

  • Schell, D. M., 1974. Uptake and regeneration of free amino acids in marine waters of Southeast Alaska.—Limnol. Oceanogr.19, 260–270.

    CAS  Google Scholar 

  • Schöne, H., 1977. Die Vermehrungsrate mariner Planktondiatomeen als Parameter in der Ökosystemanalyse. Habil. Schr., RWTH Aachen, 323 pp.

    Google Scholar 

  • Schreiber, E. 1927. Die Reinkultur von marinem Phytoplankton und deren Bedeutung für die Erforschung der Produktionsfähigkeit des Meerwassers.—Wiss. Meeresunters. (Abt. Helgoland)16 (10), 1–34.

    Google Scholar 

  • Steele, J. H., 1958. Production studies in the Northern North Sea.—Rapp. P.-v. Réun. Cons. int. Explor. Mer.144, 79–84.

    Google Scholar 

  • Steemann Nielsen, E. & Hansen, V. K., 1959. Measurement with the carbon-14 technique of the respiration rates in natural populations of phytoplankton.—Deep Sea Res.5, 222–233.

    Google Scholar 

  • Steiner, M., 1938. Zur Kenntnis des Phosphatkreislaufs in Seen.—Naturwissenschaften26, 723–724.

    Article  CAS  Google Scholar 

  • Steuer, A., 1910. Planktonkunde. Teubner, Leipzig, 723 pp.

    Google Scholar 

  • Stewart, A. J. & Wetzel, R. G., 1982. Phytoplankton contribution to alkaline phosphatase activity.—Arch. Hydrobiol.93, 265–271.

    CAS  Google Scholar 

  • Taft, J. L., Taylor, W. R., & McCarthy, J. J., 1975. Uptake and release of phosphorus by phytoplankton in the Chesapeake Bay estuary, USA.—Mar. Biol.33, 21–32.

    Article  CAS  Google Scholar 

  • Tarapchak, S. J. & Nalewajko, C., 1986. Introduction: Phosphorus-Plankton Dynamics Symposium.—Can. J. Fish. aquat. Sci.43, 293–301.

    Google Scholar 

  • Thomas, W. H., Dodson, A. N. & Reid, F. M. H., 1978. Diatom productivity compared to other algae in natural marine phytoplankton assemblages.—J. Phycol.14, 250–253.

    Google Scholar 

  • Verlencar, X. N., 1985. Urea as nitrogen source for phytoplankton production in coastal waters of Goa.—Indian J. mar. Sci.14, 93–97.

    CAS  Google Scholar 

  • Weichart, G., 1986. Nutrients in the German Bight, a trend analysis.—Dt. hydrogr. Z.39, 197–206.

    Article  Google Scholar 

  • Williams, P. J. le B., 1975. Biological and chemical aspects of dissolved and organic material in sea water.—In: Chemical oceanography. Ed. by J. P. Riley & U. G. Skirrow, Acad. Press, London,2, 301–357.

    Google Scholar 

  • Zeitzschel, B. 1980. Sediment-water interactions in nutrient dynamics—In: Marine benthic dynamics. Ed. by K. R. Tenore & B. C. Coull. Univ. of South Carolina Press, Columbia, 195–218. (The Belle W. Baruch Library in Marine Science 11.)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Dr. Dr. h. c. Peter Kornmann on the occasion of his eightieth birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gillbricht, M. Phytoplankton and nutrients in the Helgoland region. Helgolander Meeresunters 42, 435–467 (1988). https://doi.org/10.1007/BF02365620

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02365620

Keywords